
CMDragons 2014 Extended Team Description

Joydeep Biswas, Juan Pablo Mendoza, Danny Zhu,
Steven Klee, and Manuela Veloso

Carnegie Mellon University
{joydeepb,jpmendoza,dannyz,mmv}@cs.cmu.edu, sdklee@andrew.cmu.edu

Abstract. In this paper we present an overview of CMDragons 2014,
Carnegie Mellon University’s entry for the RoboCup Small Size League.
Our team builds upon the research and success of RoboCup entries from
previous years.

1 Introduction

Our RoboCup Small Size League entry, CMDragons 2014, builds upon the on-
going research used to create the previous CMDragons teams (1997–2003, 2006–
2010, 2013 [1]) and CMRoboDragons joint team (2004, 2005). Our team entry
consists of six omni-directional robots controlled by an off-board computer. Sens-
ing is provided by the shared vision system [2]. The software then predicts the
state of the world, evaluates team coordination behaviors, and finally sends driv-
ing commands to the individual robots. This paper describes the the off-board
control software required to implement a robot soccer team. We focus on the
novel contributions compared to the state of the team in previous years; the
overall architecture and robot hardware have remained largely unchanged since
2010, and the reader is referred to past entries [3, 1] for a hardware overview
and detailed description of the software architecture. In this paper we describe a
novel Coerce and Attack Planner [4] that coerces opponents into leaving strate-
gic openings in the defense, and then exploits such openings in the attack. We
further present our work on pass-ahead planning for dynamic passing between
robots, and a new threat-based defense system for defending against fast passes.

2 The Robots and Basic Skills

The CMDragons team comprises 12 identical robots1 based on the designs of
the SSL robots of CMDragons from 2006. We replicated the mechanical designs
and replaced the electronics main board with a newer design to create a team of
12 robots. While the actual games at RoboCup are played by teams of 6 robots,
having 12 robots allowed us to test our software in the lab in full games prior
to the competition. Figure 1 shows the internals of the robots, including the
electronic board and driving and kicking mechanisms.

1 Thanks to Michael Licitra for designing the mechanical designs, and for designing
and fabricating the electrical designs for the robots.

2

Fig. 1. The CMDragons robots, showing (left) a robot with the ball, (middle) without
the cover, and (right) without the electronic main board.

One of the basic skills for robots in the SSL is the ability to drive to a target
location, starting from an arbitrary start location with an arbitrary starting
velocity. We use a near-time optimal trajectory planner [5], implemented as
the function 〈t∗,V∗〉 = CalcMotion2D(xs,vs, x f) to compute the sequence of
velocity commands V∗ and the total time t∗ required to navigate from initial
location xs and initial velocity vs, to a final location xf and zero final velocity.

Using the near-time optimal trajectory planner, we can plan for intercepting
moving balls. The problem of dynamic ball interception requires computation
of where along the trajectory of the ball a robot can intercept it, and how to
intercept it. The question of where to intercept the ball is determined by where
the robot can drive to sooner than the ball can reach, and the question of how to
intercept it is governed by the relative location of the intercept with respect to the
kicking target location. The computation of the optimal ball intercept location
is complicated because the function CalcMotion2D does not have an analytic
form, so the optimal interception location can only be evaluated numerically.
For a future ball location p ball along the trajectory of the ball, we can compute

1. the ball travel time to reach p ball based on the carpet model: t ball(p ball),

2. the robot intercept location based on the target location: intercept(p ball),

3. the robot travel time: t robot(intercept(p ball)),

4. the slack time: slack = t ball − t robot, and hence

5. whether the intercept will be successful: slack ≥ 0.

This sequence of computations is performed for discrete future locations of the
ball along its trajectory to compute the optimal intercept location by a lin-
ear search. There are two types of ball intercept locations, the minimum time
intercept, given by

arg min
intercept

(t ball) : slack ≥ 0, (1)

3

and the maximum slack intercept, given by

arg max
intercept

(slack) : slack ≥ 0. (2)

The minimum time intercept is the location where the robot could intercept
the ball fastest, whereas the maximum slack intercept is the location where
interception will be most robust to execution errors due to the available slack
time. Therefore, the minimum time intercept is used when the cost of failure is
low, like an attacker opportunistically trying to intercept and shoot on the goal,
while the maximum slack intercept is used when the cost of failure is high, like
the primary defense trying to block an opponent’s shot on the goal.

3 Passing

Passing the ball between teammates is by far the most common method for
creating goal opportunities in a controlled way. This section describes how CM-
Dragons performs passes with coordination between the passing robot P and
the receiving robot R. First, all potential receivers search for locally optimal lo-
cations x∗ ∈ R2 in the field to receive a pass from P , as described in Section 3.1.
Then, P evaluates all potential receivers and chooses the best to perform a co-
ordinated pass. Finally, P and the chosen receiver R coordinate their passing
and receiving maneuvers to minimize the opponents’ opportunity to prevent a
successful pass, as described in Section 3.2.

3.1 Pass Location Selection

When searching for the best location to receive a pass, our algorithm attempts
to maximize the probability of scoring a goal if passer P were to pass to R. That
is, we define x∗ as:

x∗ ≡ arg max
x∈R2

[P (goal |x)] (3)

Notice that we can divide the probability on the right into two factors: the
probability of R successfully receiving the ball at location x, and the probability
of R successfully scoring a goal from x given that it has received the ball:

x∗ = arg max
x∈R2

[P (receive |x)P (goal | receive,x)] (4)

Since the SSL domain is high-dimensional, highly dynamic, and adversarial, it
is unrealistic to expect to compute the two probabilities above exactly. However,
the function we actually maximize attempts to approximate these probabilities
in a computationally feasible way. We define a set of important conditions ci
that must be true for R to receive a pass at location x and successfully score on
the goal. We also assume the events to be independent to simplify computation.
The approximating function is thus defined as:

P̂ (receive |x) ≡
∏
i

P̂ (ci|x). (5)

4

For R to successfully receive a pass, all ci need to be true, and P̂ (ci|x) is an
approximation to the probability that ci will be true given x. The conditions ci
we consider are:

– c1: No opponent can reach x faster than R can. P̂ (c1|x) ∼ 0 when an
opponent can navigate to x faster than R; P̂ (c1|x) ∼ 1 otherwise.

– c2: No opponent intercepts the pass. P̂ (c2|x) ∼ 0 when an opponent
can navigate to a point along the line between the origin x0 of the pass
and its destination x faster than the ball can get from x0 to that point,
considering passing speed; P̂ (c2|x) ∼ 1 otherwise, as visualized in Figure 2.

b

a
c

Fig. 2. The estimated probability that a pass from the ball location (orange circle)
will not be intercepted. This probability is high for locations with ball trajectories that
pass far from opponents, such as a, and low for those with ball trajectories that pass
close, such as b. Some passes, such as c, pass close to the opponent but can still be
successful using chip passes, although the prior success probability for those is lower
than for regular passes, as indicated by the gray region to the right.

– c3: The pass is long enough for R to react and receive the pass
robustly. P̂ (c3|x) ∼ 0 when the time the ball would take to travel from x0

to x is less than a minimum reaction time tmin; P̂ (c3|x) ∼ 1 otherwise.
– c4: The pass is short enough to be performed accurately. P̂ (c4|x) ∼

0 when |x − x0| is greater than a maximum distance dmax; P̂ (c4|x) ∼ 1
otherwise.

– c5: Location x is reliable for pass reception. P̂ (c5|x) ∼ 0 when x is
too close to the defense area, entrance into which is forbidden by the rules
of SSL, to the boundary of the field, where passes run the risk of going out
of bounds, or to other teammates, where teammates could interfere with R;
P̂ (c5|x) ∼ 1 otherwise.

An analogous approximation is computed for the probability of scoring a goal
from location x given that the pass has been received. In this case, P̂ (goal | receive,x)
is a product of probabilities of the following conditions c′i:

– c′1: Shots from x can reach the opposing goal faster than their
goalkeeper can block them. P̂ (c′1|x) ∼ 0 if the shot time is greater than

5

the time tg the opposing goalkeeper takes to block an arbitrary point on the

goal; P̂ (c′1|x) ∼ 1 otherwise.
– c′2: There is a wide enough open angle θg from x to the opposing

goal. P̂ (c′2|x) ∼ pgmin, for a constant prior pgmin, when θg = 0 (pgmin >

0 because an angle may open up as robots move), and P̂ (c′2|x) → 1 as
θg → θmax. When θg > θmax, P̂ (c′2|x) = 1, indicating that beyond a certain
threshold, the value of θg has no influence on the probability of scoring.

Figure 3 shows a visualization of P̂ (c′2|x).

Fig. 3. The estimated probability that a given location x has a wide enough open angle
on the opponents’ goal (blue line) to score a goal. The left image shows a location with
a wide open angle, ideal for a shot. The right image shows two locations with relatively
small open angles, one due to obstruction by a robot and distance from the goal, and
the other because of its location near the corner of the field.

– c′3: R will have enough time to take a shot before the opponents
block the shot. P̂ (c′3|x) ∼ 1 for locations where R can do a one-touch shot
on the goal, while P̂ (c′3|x) ∼ pturn < 1, for some constant prior probability
pturn, when the robot needs to receive the ball, turn, and then shoot (only
a two-touch shot is possible).

– c′4: R will have enough time to take a shot before opponents steal
the ball. P̂ (c′4|x) = 1 for locations inside the opponents’ defense area, where
their defenders are not allowed to enter, while P̂ (c′4|x) = pout < 1, for some
constant prior probability pout, when x is outside of the opponents’ defense
area.

Equation 5 and its analogue for P̂ (goal | receive,x) provide a value function
for all potential receiving locations; the search for x∗ is simply conducted by
random sampling and evaluation of points. This is feasible since the space to
search is a relatively small 2D space. Furthermore, at each time step, only loca-
tions close to the previous optimal are searched, to avoid big jumps in the target
destination of R.

3.2 Pass-ahead Coordination

Following the receiver robot’s selection for location x∗, passer P and receiver R
coordinate the pass so that the passed ball and R arrive at x∗ at approximately

6

the same time. P thus passes ahead to where R will be, rather than passing to
where R is. The purpose of this coordination is to minimize the window of time
in which the opponents can predict and block threats from the chosen location
x∗.

Start
pass
ahead
P,R

Start
search
R

Start
waiting
to receive

R

Start
traveling
to pass
location

R

Start
waiting
to pass

P

Start
turning
to pass

P

Shoot the
ball
P

Arrive
at pass
location

R

[0, 0] [0, Tf] [0,∞]

[Tr, Tr]
[0, Tf]

[0,∞] [Ts, Ts] [Tb, Tb]

Fig. 4. A Simple Temporal Network (STN) for pass-ahead. The letters inside each node
indicate whether the passing agent (P) or receiving agent (R) is involved in that event.
Tf indicates a maximum allowable time to search for a pass location.

This coordination can be clearly visualized using a Simple Temporal Network
(STN) [6]. Figure 4 illustrates the STN with the time constraints for passing
ahead. Note that there are some constraints where a robot could potentially wait
indefinitely. However, we are interested in the lowest achievable time bounded
by these constraints. In pass-ahead planning, we use time constraints as part of
our multi-agent plan representation [7].

Computations for pass-ahead rely on the ability to accurately estimate robot
navigation time to a given location and orientation, as described in Section 2.
They also require an accurate estimate of the time the ball will take to traverse
a specified distance when it is imparted with a specific initial velocity. This
computation is based on a two-phase (sliding then rolling) model of the ball’s
trajectory. These models provided the necessary accuracy to succeed at coordi-
nated passing ahead; such low-level coordination, combined with the higher-level
planning of Section 5, led to the success of our multi-agent attacks in RoboCup
2013.

4 Human Coaching

Since RoboCup 2013, we have focused on improving our passing function with
human input. Specifically, we try to use machine learning and case-based reason-
ing techniques to rank receiver locations. We have tried three approaches based
on Gaussian naive Bayes, support vector rankings, and Model Plus Correction.

7

4.1 Gaussian Naive Bayes

The first approach we considered was Gaussian naive Bayes. Our 2013 passing
function can easily be framed in the context of a Bayesian network. However,
there was no automated process for determining a probability distribution of each
event. In practice, these distributions were hand-tuned to optimize performance.
So, while the robots perform well in practice, this told us little about the accuracy
of our model. We wanted to see the effect of computing these values from our
logs.

To do so, we looked through all of the available logs from RoboCup 2013
games. At each free-kick that lead to a goal, we recomputed the values of several
of the CMDragons 2013 heuristics. After removing outliers, we computed the
means and variances of the distribution of each event ci, c

′
i. Then, we assumed

a Gaussian distribution.

4.2 Support Vector Machine

We contrasted the Gaussian naive Bayes approach with a support vector ranking.
One advantage that this method has over Gaussian naive Bayes is that redundant
features are given less weight. If strong independence was a bad assumption, we
would expect this to perform much better.

We implemented two support vector rankings. In the first, we used a linear
hypothesis function where our features were all of the events c, c′ from before. In
the second, we used a degree-2 polynomial kernel. By doing this, we can directly
represent dependencies between the heuristics. In both support vector rankings
we used a logistic loss function with regularization. Table 1 shows the results of
both rankings on a testing set.

Training Set Testing Set

Linear Model 70% 74%

Quadratic Kernel Model 81% 59%
Table 1. Performance of support vector rankings on a training set of 195 examples,
and a testing set of 50 examples.

As shown in Table 1, the linear model performed worse on the training set but
better on the testing set. One would expect the quadratic polynomial kernel to
perform as well or better than the linear model. We believe that this was caused
by an insufficient amount of training data. A good rule of thumb is to have
ten pieces of training data per feature. At 10 features, the degree-2 polynomial
kernel would require 10 ·

(
10
2

)
= 450 features. Unfortunately, we did not have

enough logs of past games to generate so many examples.

8

4.3 Comparison

We compared the Gaussian naive Bayes approach to the linear support vector
ranking in simulation. Specifically, an automated referee ran trials where a full
six-player team performed free kicks against three defenders. Trials ended when
the ball went out of bounds, a goal was scored, or thirty seconds elapsed. We
compare the two models to the original CMDragons 2013 model by comparing
number of goals scored and the average length of a trial.

Technique Original Naive Bayes SVR

Number of Trials 1000 562 2896

Number of Goals 153 70 298

Avg. Goals per Trial 15.3% 12.4% 10.3%

Avg. Trial time (Sec) n/a 9.3 9.2
Table 2. Comparison of the performance of the CMDragons 2013 model, Gaussian
naive Bayes model and linear support vector ranking model.

As seen in Table 2, the difference in goal rates between these 3 techniques
is very small. Notably, the difference between the linear support vector ranking
and the Gaussian naive Bayes model are not even statistically significant. The
average time per trial also did not change by a practically significant amount.

We expected the support vector ranking to perform noticeably better than
the other two models. We believe that given enough data, the support vector
ranking with a degree-2 polynomial kernel would outperform these models. How-
ever, complex models require larger data sets.

4.4 Model Plus Correction

Since we have not gathered enough data from competitions to make a sufficiently
complex model, we decided to look at what work has been done to remedy this
problem in other domains. Notably, we found work on a paradigm called Model
Plus Correction (MPC) [8]. MPC attempts to answer the question of how to
augment an imperfect model with user input.

The most basic form of MPC uses case-based planning techniques atop a
machine learning model. Intuitively, case-based reasoning is used to correct the
machine learning model where it underperforms. More formally, we define a
similarity function to compare the current state and each case in a case library,
If the state matches one of those cases, we use the candidate solution. Otherwise,
we use the machine learning model. Notably, a lot of work has been done on
applying case-based planning techniques to RoboCup [9]. Typically, one of the
largest challenges with CBR techniques in RoboCup is the large number of cases
necessary to achieve reasonable performance. However, we hopefully need fewer
cases to correct a prior model.

9

In our implementation, we used a case-based reasoning system in conjunction
with our passing function from RoboCup 2013. For free kicks, we assume the
receivers have infinite time to position themselves. So, our case similarity func-
tion depends on the location of the ball and the opponent robots. If the ball and
opponents have locations b, o1, . . . , on and a case has locations bc, o1c, . . . , onc we
define the similarity function:

α
n∑

i=1

(oi − oic)2

n
+ β(b− bc)2 α, β ∈ R+ (6)

Two cases are similar if this function returns a low value. α and β are con-
stants that affect the relative importance of differences in opponent locations
and the ball’s location. If a case has high similarity to the current situation we
rank a location’s cost as the square distance from the optimal point. Figure 5
shows an example of the MPC system when a case has been matched.

Fig. 5. A passing evaluation function is overlaid on top of the field in greyscale. Whiter
values signify high-value locations. Values in black are less than 0.5% of the optimal
value. The red square represents the optimal location chosen by the human coach.

This approach is not perfect. As more corrections are added, we expect to
see improvement only up to a certain point. Eventually, we expect conflicting
cases to be too similar to differentiate with our similarity function. For now, we
have tried to strike a balance between an accurate measure of similarity and fast
computation.

10

5 The Coerce And Attack Planner

We introduce a novel Coerce and Attack Planner (CAP) to plan attack sequences
during free kicks. Since the opponents are not permitted to get closer than 50 cm
to the ball until it is kicked, and since the free kick taker has 10 s to kick the ball,
free kicks provide a convenient scenario for the team that is awarded the free
kick to plan a progression of gameplay that might lead to a goal being scored.
Additionally, there are certain characteristics of the defense that can be exploited
to influence the plan. In general, there are two types of defending roles that the
opponent robots may assume: “ball-following” roles and “robot-following” roles.
The ball-following roles defend against direct shots on the goal from the ball,
and hence are positioned as a function of the ball’s location. The robot-following
roles, on the other hand, attempt to block passes, and hence follow the attacking
robots.

The CAP relies on these characteristics to plan a coordinated attack when
awarded a free kick. The CAP coerces robot-following opponents into positions
that leave strategically advantageous openings, allowing a teammate to attack
by moving into the opening, receiving a pass, and shooting into the opponent’s
goal. The CAP interleaves planning, execution, and monitoring in the following
sequence:

1. Detect Opponent Tactics (Monitoring): Tactic detection estimates the
ball-following and robot-following tactic that each opponent robot is running.

2. Compute Optimistic Attack (Planning): Based on the detected tactics,
the CAP computes an “optimistic attack” plan to score on the goal, consid-
ering only the ball-following opponents detected.

3. Compute Coerce Plan (Planning): Based on the detected tactics and
the optimistic attack, the CAP computes a “coerce plan”, placing attacking
robots to coerce opponents away from the optimistic attack.

4. Execute Coerce Plan (Execution): The coercing robots are moved into
the planned positions.

5. Verify Tactic Models (Monitoring): The placement of the opponents in
response is observed.

6. Compute Attack Plan (Planning): If the actual positioning of the op-
ponents differs from the expected positions of the coerce plan, then a new
“attack plan” is computed, else the previously computed optimistic attack
is used as the attack plan.

7. Execute Attack Plan (Execution): The CAP then commands the robots
to execute the attack plan.

During the free kicks, out of the team of 6 robots, one must be the goalkeeper,
and one is required to take the free kicks. Hence, the CAP must reason about
how many of the remaining 4 robots should be assigned to the coerce plan,
and how many to the attack plan. This allocation varies based on the opponent
tactics detected, and in some cases, robots may be re-used for the coerce plan
as well as the final attack plan, as we now explain.

11

In step 3, the CAP uses the number of robot-following opponents detected
from step 1, to allocate as many robots to the coerce plan. The remaining robots
are allocated to the optimistic attack plan. If there are insufficient remaining
robots to allocate exclusively to the attack plan, then robots allocated to the
coerce plan are re-used during the attack. We illustrate the allocation of robots
by the CAP in two example scenarios.

Example 1. If the CAP detects 3 robot-following opponents in Step 1, it
allocates 3 robots to coerce them away during Step 4 from the optimistic attack
plan. The CAP then allocates the remaining 1 robot on the team to execute the
attack plan during Step 7 using pass-ahead.

Example 2. If the CAP detects 4 robot-following opponents in Step 1, it
allocates all 4 robots to coerce the 4 robot-following opponents away during Step
4 from the optimistic attack plan. The CAP then reuses one of these 4 coercing
robots to execute the attack plan during Step 7.

5.1 Tactic Detection

In order to determine which of the opponents are running ball-following tactics
and which are running robot-following tactics, the CAP estimates the tactic
controlling each opponent robot. The tactics that the CAP detects are:

– Goalkeeper: a ball-following tactic that stays exclusively within the defense
area to block direct shots on the goal,

– Primary Defense: a ball-following tactic that that stays on the perimeter
of the defense area and always moves to cover the angle between the ball
and the goal,

– Mark: a robot-following tactic that follows attacking robots to prevent them
from receiving passes or shooting on the goal, and

– Wall: a robot-following tactic that stays as close as possible to the free kick
taker to prevent it from passing to its teammates.

For every tactic t, given a world state W consisting of the locations of all the
robots and the ball on the field, the model of the tactic Mt is used to compute the
probability P (p|Mt,W) that a robot positioned at location p would be running
tactic t, modelled by Mt. In our work, P (p|Mt,W) is computed analytically
using assumptions of SSL-specific tactic behaviors and the rules of the SSL. A
possible alternative would have been to estimate the probabilities numerically
from logs [10, 11]. Figure 6 shows the probability distributions for the models
of the tactics listed above. Let R be the set of opponent robots, and pr denote
the location of an opponent robot r ∈ R. The robots Rt running a tactic t
for the current world state W are thus detected to be those robots in the set
Rt = {r ∈ R |P (pr|Mt,W) > αt}, where αt ∈ [0, 1) is a threshold defined for
detected tactic t. This means that the detected tactic for an opponent is the
tactic that best explains its position on the field for the current world state.

12

Fig. 6. The probability distributions given by the models for various tactics opponent
robots might run, including Mark (red), Wall (purple), Primary Defender (green), and
Goalkeeper (blue). The defense area line is shown in white, our robots in yellow, and
the ball in orange.

5.2 Computing Attack Plans

There are two steps of the CAP that involve computing attack plans: step 2, when
computing the optimistic attack, and step 6, when computing the final attack
plan. When computing the optimistic attack plans, the only opponents taken
into account are the ones detected (during step 1, opponent tactic detection)
to be running ball-following tactics. When computing the final attack plan, all
opponents are taken into account.

An attack plan consists of a pass from the free kick taker to a pass receiver
at a specific location on the field, and a subsequent shot on the goal by the pass
receiver. The possible locations of the pass receiver are evaluated by discrete
sampling on a grid of size 6 cells by 4 cells spanning the entire field. While
this discrete sampling could be coarser or finer, we empirically evaluated this
discretization to be an acceptable tradeoff between computational complexity
and the granularity of the resulting plans. Each cell on the grid is evaluated for
a possible pass location as discussed in Section 3.1. The cell with the highest
probability of a goal being scored from it is then chosen as the pass location for
the attack plan.

5.3 Computing The Coerce Plan

Once the optimistic attack plan is computed, the coerce plan is computed on the
grid to place robots to coerce robot-following opponents away from the optimistic
attack plan. For the coerce plan, every cell on the grid is evaluated as follows:

1. Consider placing one attacking robot in the cell.
2. Based on the detected robot-following opponents, estimate where the robot-

following opponents will drive to, in response to our robot being placed in
this cell.

3. Evaluate the “interference likelihood”, defined as the likelihood of these
robot-following opponents intercepting either the pass (Section 3.1) or the
shot on the goal from the optimistic attack.

13

After these steps are performed for all possible cells, the coerce plan is then the
set of those cells with the smallest values of interference likelihood. By sending at-
tacking teammates to the cells in the coerce plan, the robot-following opponents
are thus coerced into marking our robots, consequently leaving the optimistic
attack plan free of interference.

6 Threat-Based Defense

The threat defense evaluator considers threats, which are computed based on
the locations of the ball and opponent robots, and chooses locations to place
defenders to defend against each of them. There are two kinds of threats: one
first-level threat and multiple second-level threats.

Three distinct tactics work together to form a coordinated defense. The goal-
keeper remains within the defense area, staying near the goal and defending
against the first-level threat. Primary defenders, of which there are at most two
at any given moment, always move along the edge of the defense area. They
guard against the first-level threat if all of them are needed to do so, but one
may guard against second-level threats if only one is needed for the first-level
threat. Secondary defenders are placed away from the defense circle to guard
against second-level threats.

6.1 First-level Threat

The first-level threat represents the location of the most immediate threat of a
shot on our goal. It is defined to be either the location of the ball or, when the
defense evaluator judges that a pass is imminent (as defined below), the location
of one of the opponent robots.

A pass is defined to be imminent when the ball’s speed is above a certain
threshold, its velocity is not pointed toward our goal, and the defense evaluator
judges that it may be headed toward an opponent robot which might be able
to receive it soon. The determination of whether an opponent is in position to
receive is made using a heuristic function based on the velocity of the ball and
the vector from the ball to the robot. More precisely, for each opponent, its “risk
of receiving” is given by

−||d||||v|| · (1 + c · (1− cos θ)), (7)

where c is an adjustable parameter, v is the velocity of the ball, d is the vector
from the ball’s location to the opponent’s location, and θ is the angle between v
and d. This expression is greater for positions near the ball than ones far away,
and for positions which are in front of the ball’s motion than for ones which are
not. If the highest of any opponent’s risk of receiving is above a threshold, then
the evaluator judges that the opponent is in position to receive.

When this happens, the first-level threat is the location of the opponent
with highest risk of receiving. This means that when the opponent team makes

14

a pass, it is possible to anticipate where it will be received, and immediately
defend against that location, rather than continuously following the ball as it
moves, which would result in slower responses.

Once the location of the first-level threat is computed, the defense evaluator
decides how to position the goalkeeper and primary defenders to block all open
angles on our goal. Primary defenders guarding against the first-level threat
always have their target locations along the edge of our defense area. There are
three cases that need to be considered:

– If one defender can block the entire open angle by itself: one defender stands
along the bisector of the open angle; the goalkeeper in front of the center of
the goal.

– If one defender and the goalkeeper can block the open angle: one defender
stands just inside the line from the threat location to the nearer corner of the
goal; the goalkeeper stands along the bisector of the remaining open angle,
as far back as possible.

– If two defenders and the goalkeeper are needed to cover the open angle: the
goalkeeper stands along the bisector of the open angle, leaving two smaller
open angles to either side of it; one defender stands along the bisector of
each of these smaller angles. Figure 7 demonstrates these computations.

Fig. 7. Placement computation for the primary defenders when two are required. The
goalkeeper is placed along the bisector (red dotted line) of the angle from the ball to
the goal (red dashed lines). The defenders are placed along the bisectors (green dotted
lines) of the two remaining smaller angles (green dashed lines).

6.2 Second-level Threats

The second-level threats are the opponents which might be able to receive the
ball from the first-level threat. For every such opponent, two potential defense
locations are computed:

– A point on the line from the opponent to the center of our goal. The point
is based on latency and acceleration, chosen so that if the opponent starts
accelerating, our robot can respond fast enough so that the line to the goal
is always blocked. This defends against shots on our goal.

15

– The midpoint of the line segment from the opponent to the first-level threat.
This defends against passes between opponents.

The computed positions are then ranked according to the following criteria,
given in decreasing order of priority (where “opponent” refers to the opponent
robot which caused a position to be generated):

– Opponents which are closer to our side of the field than a configurable thresh-
old are ranked higher than those which are not.

– Positions which block shots (as opposed to passes) are ranked higher.
– Opponents which have a larger available open angle on the goal are ranked

higher. All angles larger than a configurable threshold are treated as equal.
– Opponents which will be able to shoot on the goal sooner are ranked higher.

The time to shoot is given by the passing time plus the shot time.

The highest-ranked positions are then assigned to the remaining defenders, with
each one greedily assigned to the nearest defender.

An exception to the assignments is when there is a “held” task. This occurs
when a defender is blocking a goal shot from a second-level threat, and then the
ball is passed toward that opponent, making it the first-level threat. In this case,
the defender which is blocking the goal shot continues to block that shot until
the primary defenders have moved into place to guard the new first-level threat.

7 Performance

At RoboCup 2013, CMDragons played 7 games in total, and won all but the
final game. We scored a total of 27 goals during regular gameplay and 7 goals
from penalty kicks, while only 1 goal was scored on us during regular gameplay
and 6 goals from penalty kicks. In addition to goals scored in each game, we
can evaluate performance during the games using a number of metrics that
evaluate the effectiveness of the defense and offense strategies of CMDragons.
These metrics include:

1. Offense Ratio: the ratio of the game time that the ball was on the oppo-
nent’s half of the field, to the game time that the ball was on our half of the
field.

2. Attack Ratio: the ratio of the number of times our team attempted to
shoot towards their goal, to the number of times the opponent attempted to
shoot towards our goal.

The offense ratio indicates how often we were on the offensive rather than the
defensive, and the attack ratio indicates how often we exploited opportunities
to attempt to make shots on goal, compared to our opponents. Table 3 lists
the scores and performance metrics for each of the games played, including the
Round Robins (RR), Quarter Finals (QF), Semi-Finals (SF) and Finals (F). The
game against EMEnents during the round robins was played against an empty

16

Opponent Stage Score
Offense Attack
Ratio Ratio

RoboDragons RR 2:0 1.38 1.82
BRocks RR 10:0 1.48 3.14
Parsian RR 2:1 2.57 1.9
STOx’s QF 2:0 1.78 1.55
MRL SF 2:0 1.13 1.75
ZJUNlict F 2(4):2(5) 1.63 1.09

Table 3. Game scores and performance for the games played by CMDragons at
RoboCup 2013. Scores are in the form CMDragons:Opponent, with goals from penalty
shootouts in parentheses.

field, and resulted in a winning score of 10 : 0 for CMDragons, so we do not
include it in the table.

The performance metrics from the logs of the RoboCup 2013 games reveal a
number of interesting features. The offense ratios for all the games were greater
than 1.0, indicating that the majority of the game times was spent attacking
rather than defending. The attack ratios for all the games except for the finals
were significantly greater than 1, indicating that our offense was more aggres-
sive at attempting shots on the opponent’s goal than the opponents’ were on
ours. The strategies of the opponents varied significantly across games. Robo-
Dragons [12] and ZJUNlict [13] had defense strategies that were very swift at
responding to changes in our attack formations, particularly when transitioning
from the Coerce step to the Attack step of the CAP. The BRocks [14] attack
strategy included a number of opportunistic attempts on our goal, which our
defense intercepted and deflected to their goal. Thanks to the new dynamic
ball interception skill (Section 2) and the strategic placements of the secondary
defenders (Section 6.2), we successfully intercepted many passes between oppo-
nents, some of which even resulted in goals in the games against BRocks [14],
STOx’s [15] and ZJUNlict [13].

8 Conclusion

This paper gave a brief overview of CMDragons 2014, covering our novel Co-
erce and Attack planner, and a threat-based defense. Our future work includes
focusing on additional opponent model learning, and incorporating direct input
from a human. We believe that the RoboCup Small Size League is and will con-
tinue to be an excellent domain to drive research on high-performance real-time
autonomous robotics.

References

1. J. Biswas et al. CMDragons 2013 Extended Team Description Paper. In Robocup
2013.

17

2. S. Zickler, T. Laue, O. Birbach, M. Wongphati, and M. Veloso. SSL-vision: The
shared vision system for the RoboCup Small Size League. In RoboCup 2009 Sym-
posium, pages 425–436.

3. S. Zickler et al. CMDragons 2010 Extended Team Description Paper. In Robocup
2010.

4. J. Biswas, J. P. Mendoza, D. Zhu, B. Choi, S. Klee, and M. Veloso. Opponent-
driven planning and execution for pass, attack, and defense in a multi-robot soccer
team. In AAMAS 2014.

5. T. Kalmár-Nagy, R. D’Andrea, and P. Ganguly. Near-optimal dynamic trajectory
generation and control of an omnidirectional vehicle. Robotics and Autonomous
Systems, 46:47–64, 2004.

6. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intel-
ligence, 49(1-3):61–95, 1991.

7. P. Riley and M. Veloso. Planning for distributed execution through use of proba-
bilistic opponent models. In AIPS 2002, pages 72–81.

8. Cetin Mericli. Multi-Resolution Model Plus Correction Paradigm for Task and Skill
Refinement on Autonomous Robots. PhD thesis, Bogazici University, 2011.

9. Raquel Ros, Josep Lluas Arcos, Ramon Lopez de Mantaras, and Manuela Veloso.
A case-based approach for coordinated action selection in robot soccer. Artificial
Intelligence, 173(9-10):1014 – 1039, 2009.

10. K. Han and M. Veloso. Automated robot behavior recognition. In Robotics Re-
search: The Ninth International Symposium, 2000, pages 249–256.

11. C. Erdogan and M. Veloso. Action selection via learning behavior patterns in
multi-robot domains. In IJCAI 2011, pages 192–197.

12. K. Yasui et al. RoboDragons 2013 Extended Team Description Paper. In RoboCup
2013.

13. Y. Wu et al. ZJUNlict Extended TDP for RoboCup 2013. In RoboCup 2013.
14. Ö.F. Varol et al. BRocks 2013 Team Description. In RoboCup 2013.
15. S. Rodŕıguez et al. STOx’s 2013 Team Description Paper. In RoboCup 2013.

