TIGERs Mannheim
(Team Interacting and Game Evolving Robots)

Extended Team Description for RoboCup 2016

Andre Ryll, Mark Geiger, Nicolai Ommer, Arne Sachtler, Lukas Magel

Department of Information Technology, Department of Mechanical Engineering
Baden-Wuerttemberg Cooperative State University,
Coblitzallee 1-9, 68163 Mannheim, Germany
management@tigers-mannheim.de
https://www.tigers-mannheim.de

Abstract. This paper presents a brief overview of the main systems
of TIGERs Mannheim, a Small Size League (SSL) team intending to
participate in RoboCup 2016 in Leipzig, Germany. This years’ EDTP
focuses primarily on the wireless communication protocol of our robots.
The nRF24L01+ module is widely used in the SSL. To lower the burden
for new teams and eventually improve the performance of existing teams
radio quality the wireless protocol of TIGERs Mannheim is explained in
depth.

1 Mechanical and Electrical System

This year, we have decided to make the second major redesign of our robots since
our first participation in 2011. The most important changes are the substitution
of 30W motors by 50W variants and larger main wheels with more rollers. The
new wheels also use X-Ring rubbers on their rollers. We also increased the num-
ber of rollers on each wheel to 20 (from 15 in the previous version). This leads
to a much smoother movement with more traction. Furthermore, the wheel’s di-
ameter has been increased to yield a higher top speed. Figure 1 shows in image
of our first assembled prototype.

The dribbling motor has been exchanged as well. The Maxon EC-16 was
found to be too fragile and too expensive. It has been replaced by the Maxon
EC-max 22. Although it has 5W less power, its performance is comparable to
the previous motor.

The main electronics board has been completely redesigned as well. The pre-
vious version with 5 microcontrollers was found to be too complex. All micro-
controllers were replaced by an STM32F7 which is a Cortex-M7 microcontroller
clocked at 216 MHz. This single microcontroller can run the complete sensor fu-
sion and robot control on one CPU. Motor controller microcontrollers have been
replaced by the Allegro Microsystems A3931 3-Phase BLDC controller IC [1].

Table 1 outlines the technical details of the 2013/2014 version and the new
2016 version of our robots. Depending on the available budget, we will either
participate with the old robots, the new ones, or a mixed team of both.

https://www.tigers-mannheim.de

[Robot version 2013 /2014 2016
Dimension ?178 x 148mm D179 x 146mm
Total weight 2.9kg 2.5kg

Max. ball coverage 12.3% 19.7%

Driving motors

Maxon EC-45 flat 30W

Maxon EC-45 flat 50W

Gear 15: 50 18 : 60
Gear type Internal Spur

Wheel diameter 51mm ‘57mm
Encoder US Digital E8P, 2048 PPR |[2]

Dribbling motor

Maxon EC-16 30W with
planetary gear head (1 : 4.4)

Maxon EC-max 22, 25W

Dribbling gear 48 : 24 50 : 30
Dribbling bar diameter |12mm 17mm
Kicker charge topology |SEPIC

Chip kick distance approx. 4m

Straight kick speed max. 8m/s

Processors

2x STM32F407 [3], 3x
STM32F303 [4]

STM32F746 [5]

Used sensors

Encoders, Gyroscope,
Accelerometer

Gyroscope, Optical Flow,
Accelerometer

Communication link

nRF24L01+ @2MBit /s, 2.400 - 2.525GHz [6]

Table 1. Robot Specifications

Fig. 1. Prototype of our new robot (v2016)

2 Wireless Communication

Wireless communication is an essential part of most team-based RoboCup dis-
ciplines. Compared to other leagues, the SSL is very fast paced and the robots
are centrally controlled. This imposes special requirements on the wireless com-
munication to each robot. It has to be fast and deterministic.

Figure 2 shows an overview of a typical SSL network layout. The blue team
uses the conventional appoach of a central AI computer connected to the official
network (with vision and referee) and to a base station for communicating with
their robots. This direct connection between the AI computer and the base
station has the advantage of low latency and guaranteed bandwidth.

SSL Vision Referee Box

b

Yellow Robots Blue Robots

Yellow Al

W

> Base Station Base Station <

Fig. 2. SSL network layout. The blue team uses a 1:1 connection from AI computer to
a base station. The yellow team uses our approach of a network-capable base station.

The yellow team uses our approach of a network-capable base station. This
may look as a disadvantage at first because there is one additional hop from Al
computer to base station and the bandwidth can be influenced by other net-
work participants. As the network is usually a gigabit switched ethernet, both
disadvantages only exist theoretically. The used bandwidth of all participants is
in the range of 10MBit/s. Collisions cannot occur due to the switched nature
of ethernet and the latency from any participant to any other is below 1lms.
The network-capable base station has three major advantages. First of all, a
network connection is well supported on every operating system and program-
ming language. Experience showed, that e.g. a serial connection in Java can be
challenging. This problem is mitigated with a network connection. Such a con-
nection is also well supported by modern microcontrollers. A second advantage
is the possibility to directly receive the robots’ position from the SSL Vision
on the base station and forward it to each bot. This lowers the latency from
position capture to the arrival of the position on the robots as this information
is not passed through an additional computer (e.g. the blue AT’s computer). We

extensively use this feature for our sensor fusion which is running on each robot
individually. The last benefit is the implementation of the shared radio protocol
directly on the base station. Thereby, another team can use our robots without
needing our AI computer or software.

The following sections will describe our base station in detail to allow other
teams to benefit from our experience. The exact schematics of the base station
and also the full source code can be found in our previous open-source release’.

2.1 Base Station Hardware

The hardware of the base station is outlined in figure 3. The main element is
an STM32F4 microcontroller from STmicroelectronics [3]. This Cortex-M4 mi-
crocontroller is clocked at 168 MHz and features special periphery for interfacing
ethernet networks and SPI devices (like the nRF24L.01+ chip). The ethernet in-
terface requires an additional PHY chip, which implements the physical layer and
manages bit encoding/decoding for ethernet data. The DP83848[7] is frequently
used together with the STM32 and several examples exist for this combination.
Data is transferred from the PHY chip to the STM32 by automated DMA trans-
fers. This lowers CPU load and improves transfer performance. The STM32 is
also able to automatically insert Ethernet, IP, and UDP checksums.

JTAG

nRF24L01+
Socket A
RJ45 Ethernet PHY ETH Microcontroller
Socket (DP83848) (STM32F407)
USARTH NRF24L01+
Socket B

@ Serial Interface
(FT232RL)

Fig. 3. Basestation hardware components. Round nodes indicate external connections.

Apart from the network interface, the base station has two slots for 8-pin
nRF24L01+ modules. Each module is connected via a dedicated SPI bus to
the STM32. The dedicated bus is important to meet the timing specifications
outlined in section 2.3 and to reduce noise on the chip which can lead to a bad
link quality. Up to now, we only use one module in the base station. The option
for a second module can be used to either implement redundancy or to control

! https://tigers-mannheim.de/index.php?id=29

another team of robots on a different frequency. Thereby a full match with two
teams can be radio-controlled by a single base station.

| \ nRF24L01+ |
Frequency 2.400 - 2.525GHz
Bandwidth 2MHz (1MHz @1MBit/s or 250kBit/s)
Speed 2MBit /s, 1MBit/s, 250kBit/s
Access Pattern TDMA
Latency Fixed
Non-Overlapping Channels 62 @ 2MBit/s, 125 otherwise

Table 2. nRF24L01+ key characteristics

We selected the nRF24L01+ single chip transceiver for our wireless com-
munication. It is very common in the SSL and well suited for the previously
mentioned requirements. Its main characteristics with our implementation are
outlined in table 2. The base station uses a module with power amplifier and
external antenna. The robots use small modules with a PCB antenna.

The hardware is finalized by a JTAG connection to program the STM32 and
a USB-Serial interface used for a console and debugging. Additionally, the whole
base station is powered via this USB interface.

2.2 Base Station Software

The software running on the STM32 uses the chibiOS? free operating system. It
allows to create multiple tasks and lets them run based on readiness and priority.
The two most important tasks are the Network task (low prio) and the Wifi Task
(high prio). The Network task runs event-based. It gets notified whenever there
is a packet ready on the ethernet interface or on one of the robot wireless queues.
Figure 4 shows an overview of the dataflow in the base station and also shows
the main buffering memories/queues. The Wifi Task runs strictly interval based
and processes one robot on each interval.

Network Task Data from the network, which is addressed (either unicast or
multicast) to the base station is transferred automatically via DMA to the ETH
RX buffer. It is organized as a ring-buffer with 64 slots of 128 byte each. If a
packet is larger than 128 bytes it is automatically split and distributed among
succeeding slots. In the SSL environment, a high number of small packets is very
common. Consquently, the ring-buffer consists of short 128 byte slots.
Whenever a slot is filled, the Network task is notified. If a complete packet
arrived and passed all checksum tests (done automatically in hardware) it is

? www.chibios.org

polled from the Network task and put in the RX processing buffer. It has a size
of 1524 byte which is the maximum size of a regular ethernet frame.

e

ey <&

DMAJ; hg g DMA ”

ETHRX & Network W ETH TX
64x 128B } } 64x 128B

Poll one packet

Cre
Etherne

/ !
v / \
v EdE AT
3 L N N dw
L m vk mdm
Bot0 Bqt1 ... Bot23 Bot0 Bqgt1 ... Bot23
Upload one Download one
slot (32B) TX Queues: 400B slot (32B) RX Queues: 200B

ax328 & N 3x 32B
TX FIFO } } RX FIFO

nRF24L01+

Fig. 4. Basestation dataflow diagram with network and wifi task. Storage pictograms
indicate the main queue/memory objects.

We implemented a custom UDP /IP stack on the base station. Freely available
stacks were either too complex, missed features (e.g. IGMP) or were simply too
slow. Our own implementation uses zero-copy during decoding, which makes this
implementation very fast. We implemented the following protocols:

Ethernet

ARP (required to map MAC addresses to IPs)

ICMP (responds to the well-known “ping” command)

—IP

— UDP

— IGMPv3 (required to join multicast groups, e.g. from the SSL Vision)

This network stack is able to achieve a throughput of up to 45MBit /s. This is far
beyond the requirements of the SSL environment. If the packet is an ARP, ICMP
or IGMP packet it is handled accordingly and a response packet is eventually
sent out again.

If the packet is from the SSL Vision it is decoded and all robot positions are
stored internally. These positions are later on used by some robot commands to
forward this position to the robots. The decoding of the protobuf messages is
done with the protobuf-c library®. This library automatically generates C code
from the protobuf message definitions to decode and encode such messages. It
furthermore allows to employ custom allocators for environments where dynamic
memory allocation is not possible. This is also used on the base station, as
memory managament there is fully static.

If the packet is on the shared radio port it is handled accordingly and sent
to another internal task. The RST task processes it and generates the according
robot commands.

If the packet is a robot command from our central Al, it is encoded again
and put into the according wireless queue on the base station. The base station
itself does not know the content of the command. The content is packed in an
abstract byte field. This allows to add new commands to the Al and the robots
without the need to modify the base station’s code. Nevertheless, there is one
exception to this approach. Some commands from the AI include unset fields
which are filled up by the base station with the current position of the robot.
These commands must be known and recognized by the base station.

Whenever a packet is completely received on one of the wireless queues the
Network task is notified as well. It then fetches the data from the queue and
creates a UDP/IP packet addressed to our central AI. The TX buffer (1524
byte) is used to store data as well as UDP, IP, and Ethernet headers during
package assembly. This buffer is protected by a mutex to avoid resource conflicts
if another task wants to send Network data as well.

Wifi Task For each possible robot the base station has one wireless TX (400
byte) and one RX queue (200 byte). This makes a total of 24 TX/RX queues for

3 github.com/protobuf-c/protobuf-c

12 yellow and 12 blue robots. In theory the base station can therefore handle 24
robots simultaneously. The wifi task works with fixed time slots. The duration
of these slots is dictated by the nRF24L01+ speed setting. Table 3 summarizes
the settings and the corresponding update rates for one and eight robots.

During each time slot up to 32 bytes can be transferred to one robot and
32 bytes of acknowledgement payload data can be retrieved from one robot.
The Wifi task subsequently goes through all 24 robot queues. Robots that are
indicated as offline are skipped. E.g. if only one robot is online, this results
in an update rate of 1kHz for that robot. The processing of all robots once is
subsequently called a run. To detect if a new robot came online two methods
can be used.

l Speed ‘Slot Duration‘Update Rate (1 Bot)‘Update Rate (8 Bots)‘

2MBit/s 1.0ms 1000Hz 125Hz
1MBit/s 1.2ms 833Hz 104Hz
250kBit /s 3.5ms 286Hz 36Hz

Table 3. Wifi Task slot times and update rates depending on link speed

The first method uses one slot after all online bots have been processed to
query a robot which is listed as offline. If it responds, it is marked as online. This
results in a dynamic total runtime for a complete run through all online robots
as the runtime depends on the number of available robots.

A fixed runtime is sometimes preferable to state an upper limit on the total
runtime and consequently the maximum latency that can occur. This is done
with the second detection method. The number of robots to process during each
run is fixed. Here, the online robots are processed first as well. Afterwards, the
remaining slots in that run are used to check for new robots. E.g. if the number
of robots to process is fixed to 8 and 3 robots are currently online, then 5 slots
will afterwards be used to check for new robots. This also reduces the time until
a new robot is discovered.

During processing one time slot the CPU is not completely occupied. It
retrieves data from the TX queue and forwards it to the nRF24L01+ chip.
Afterwards it sleeps until the slot time elapsed and retrieves the data from the
nRF24L01+ chip and puts it in the RX queue. During the idle time, the Network
task or other lower priority tasks can execute.

This access scheme effectively generates a centralized Time-Division Multiple-
Access (TDMA) pattern on the base station. In summary, this avoids collisions
on-air and provides an effective bi-directional transfer channel with the use of
only a single frequency.

2.3 Interfacing the nRF24L01+

To interface the nRF24L01+ chip, one SPI bus, one enable data line (chip en-
able), and one external interrupt line is required. Furthermore, a timer with mi-

crosecond precision is needed for optimal performance. The SPI bus is clocked
at 656kHz. The external interrupt is handled by the STM32’s EXTI periphery
block which can generate a software interrupt and execute code with minimal
delay.

We use some of the features of the Enhanced ShockBurst data link layer
of the nRF24L01+ to achieve best performance in the SSL environment. We
explicitly use the following features:

— 1-32 byte dynamic payload length
— Automatic packet handling
— Auto acknowledgement with payload

Although it might look promising we do NOT use the following features:

— Auto retransmit
— 6 data pipe MultiCeiver for 1:6 star networks

Auto retransmit leads to a non-deterministic transmission time, depending on
the number of retransmits. This is not desirable in an environment where we
want to achieve minimum latency. With the MultiCeiver feature one nRF24L01+
configured in receive mode can receive data from up to 6 transmitters. We do
not use this feature because our base station only operates as transmitter (data
from robots is contained in the ACK payload) and because this feature is limited
to 6 robots. As soon as there are more robots per team, this approach is not
extendable any more.

Table 4 shows the configuration of the nRF24L01+ chip for our purpose.
The most important settings are the use of a 2 byte CRC and a 3 byte address
field. Furthermore, the Enhanced ShockBurst settings outlined above are acti-
vated. We only use the data pipe 0. Although retransmissions are disabled, the
retransmit delay needs to be adjusted as well. It also determines the timeout for
packets with acknowledgement payload.

| Address [Mnemonic [Value [Description ‘
0x00 CONFIG 0x0E | transmitter, power up, CRC16, no IRQs masked
0x02 | EN_RXADDR | 0x01 Only enable data pipe 0
0x03 | SETUP_ AW |0x01 3 byte address field
0x10 | @1MBit/s or 2MBit/s: retransmit delay 500us
0x04 |SETUP_RETR 0x50 @25/0kBit/s: ret(‘ansmit delay 15087us
0x05 RF_CH - Depends on selected frequency
0x0E 2MBit/s, +0dBm output power
0x06 RF_SETUP |0x06 1MBit/s, +0dBm output power
0x26 250kBit /s, +0dBm output power
0x0A |RX ADDR_PO| - Depends on addressed robot
0x10 TX ADDR - Depends on addressed robot
0x1C DYNPD 0x01 Dynamic payload length on pipe 0

0x1D FEATURE 0x07 |Enable dynamic payload length and ACK payload
Table 4. nRF24L01+ register settings which differ from default

Listing 1 shows the pseudo-code for processing one robot slot on the base
station (refer 2.2). At a rate of 2MBit/s the precision timer is started with a
timeout of 1ms (see table 3).

Algorithm 1 Pseudo-Code for handling one robot slot. Settings are 2MBit /s.
Robot address is OxF1F1F1.

start Timer (precisionTimer , 1ms)
writeReg (RX_ADDR PO, 0xF1F1F1)
writeReg (TX_ADDR, 0xFIF1F1)
writeReg (W_TX PAYLOAD, TXPayload|[])
ChipEnable ()
waitFor (nRF_IRQ) // data transmitted
ChipDisable ()
status = readReg (STATUS)
rxLen = readReg(RX PW _P0) // RX payload width
if status =— RXDataReady

if rxLen > 32

writeCmd (FLUSH_RX)
else if rxLen > 0

rxPayload |] = readReg(R_RX PAYLOAD)
end
end
if status — MaxRT // means no acknowlegdement
writeCmd (FLUSH TX)
end

writeReg (STATUS, 0x70) // clear all status flags
waitFor(precisionTimer)

First of all, the address for RX and TX is configured. Each of the 24 possible
robot IDs (12 yellow + 12 blue) has its own address. There exists a look-up-
table for each ID to translate it to an address. Although the ID could directly be
used as address, this is not advisable. According to the nRF24L.01+ datasheet,
the address should not toggle only once (only one change from 0 to 1 in the
bitstream) or be a continuation of the preamble used in each wireless packet
(0xAA or 0x55).

Afterwards, up to 32 bytes of payload data to transmit are uploaded to
the nRF24L01+. The chip is then enabled to start the wireless transfer. The
completion is signalled by an external IRQ. After the reception of this IRQ, the
chip is disabled.

To determine if the transmission was successful, the status and the RX pay-
load width is read. If the RX data ready flag is set, this means the robot attached
payload data to its acknowledgement. If the length is larger than 32 byte an er-
ror occured during transmission and the RX queue on the nRF24L01+ needs to
be flushed. If the length is smaller, the RX data will be read from the chip. If

there was no acknowledgement, this is signalled by the mazimum retransmission
flag. This also works if zero retransmissions are configured. In that case the TX
queue should be flushed.

Finally, after data has been transmitted and received the status flags are
cleared with a write to the STATUS register. The complete process should fin-
ish before the precision timer expires. Hence, the STM32 now waits for this timer
to expire to maintain its fixed TDMA schedule.

Listing 2 briefly shows the processing on the robot side. The robot always
runs its nRF241.014+ module in receive mode. It always waits for an interrupt
which signals the module received data. Empirical tests have shown that the
received data cannot be read immediately. At a data rate of 2MBit/s a delay
of 300us is required before the data can safely be read. At 1MBit/s 500us are
required and at 250kBit/s 1500us are needed.

Algorithm 2 Pseudo-Code showing nRF24L01+ processing on one robot.

while (1)
waitFor (nRF_IRQ)
delay (300us)
readAllPackets ()
startTimer (precisionTimer , 300us)
processReceivedPackets ()
waitFor (precisionTimer)
uploadAckPayload ()
end

The nRF24L01+ chip has two internal FIFOs with 3x 32 byte each (one for
RX and one for TX). After the delay has expired data is read from the chip until
the RX FIFO is completely drained. Then the precision timer is started again
with a timeout of 300us. During this time the received packets are processed.
After the timer expired the TX FIFO of the module is filled with data to be
attached to the acknowledgement when the robot is addressed the next time.

The second delay ensures that data is transferred to the module before it
is queried the next time. In total the delay is 600us from the time of the IRQ
of the last transfer. This leaves 400us as a buffer in case the operating system
jitter and higher priority tasks delay the upload. It is crucial to upload the data
before the module is active again. Otherwise, the data is lost.

2.4 Wireless Protocol

On the lowest level our wireless protocol is based on the nRF24L01+ chip which
allows to transfer data chunks of up to 32 byte. We can make two assumptions
about this communication channel:

— Packets always arrive in the order they were sent (in-order), no re-ordering
or retransmission occurs

— Packets arrive completely and correctly or not at all. This is ensured by the
2 byte CRC of the Enhanced ShockBurst data link protocol.

Upon these assumptions we built our transport layer. The first byte of the avail-
able 32 bytes is always used as control byte. This leaves 31 bytes for data. The
control byte is further divided into one data continuation bit (DCB) and 7 bits
for a sequence number. The sequence number is incremented with every trans-
mitted packet. This allows the receiving side to determine if a packet has been
lost. Statistically this is also used as a link quality indicator.

Even if the base station does not have any command to send to the robots
the control byte is always sent. It is essential to use a sequence number here,
otherwise data can be wrongly detected as duplicate by the nRF241.01+ module.

Explanation: The module uses the 2 byte CRC and a 2 bit PID field to
identify duplicate packets. The PID is incremented after each transmission. If
the PID and CRC are equal, the packet is duplicate. If a sequence number is
not used, the payload and consequently the CRC is always the same. If we have
a multiple of 4 robots online, each robot will always receive a packet with the
same PID (with two bits only 0-3 are possible values). As the PID and the CRC
are now identical, the data is identified as duplicate and dropped. A lost link is
detected although the module still receives correct data.

To use the transfer channel with 31 byte blocks as effectively as possible, it is
desirable to combine multiple small commands into one packet. This also requires
to determine the end of one packet and the start of a new packet. Furthermore,
commands that are larger than 31 bytes need to be split into multiple packets.

In our wireless protocol, we use the zero (0x00) as packet delimiter. It is
appended after each command. This requires that all zeros which exist in the
command data need to be removed. We achieve this by the use of a technique
called Consistent Overhead Byte Stuffing (COBS) [8]. The original implemen-
tation of this technique has a maximum of 1 byte overhead for every 254 byte
of data. It effectively encodes all zeros in the command datastream. We also
employ two extensions to this technique which are called Zero Pair Elimination
(ZPE) and Zero Run Eliminiation (ZRE). This reduces the encoding ratio to 1
byte overhead for every 208 byte of data. It has the benefit of compressing 2-15
succeeding zeros into a single code byte. Such zeros occur very often in command
data. E.g. a small 32bit integer value often has 2 or 3 leading zeros if the byte
stream is considered.

Any command to a robot is COBS encoded and a zero is appended. This
encoded data is then put into the robot’s Wifi TX queue (see fig. 4). Commands
from this queue are used to fill a 31 byte temporary buffer. Depending on the
encoded command size, this can be one or more commands. As soon as 31 bytes
are reached or there are no more commands, the data is transferred to the
nRF24L01+ TX FIFO, prepended by the control byte. If a command crosses
the 31 byte boundary it is considered a split packet. In this case, the first chunk
of this command is sent in time slot ¢,, and the second chunk in time slot ¢,,41. If

the command is larger, it can even span multiple packets. Whenever a command
is continued in one packet, the DCB is set.

The use of the packet delimiter code character and the DCB makes this
protocol very robust in terms of packet loss. A packet loss is identified by a jump
greater than one in the sequence number. If the DCB is not set, this means that
a new command starts at byte 2 of the received data (first byte is the control
byte). It does not matter if any loss occured before. If the DCB is set and a loss
is detected this means that a command is continued from byte 2 on. This data is
useless as the previous packet has been lost. In this case, the new data is scanned
for a packet delimiter. If one is found, retrieval of a new command restarts from
there. Without the DCB it would not be possible to determine if data starting
at byte 2 is valid or needs to be discarded. Only looking for the packet delimiter
then eventually leads to discarding data that is actually complete.

The transport layer of our wireless protocol is quite generic. It makes no
assumptions about the data to be transmitted nor about its size. It can compress,
transmit, and encode any number of bytes. With COBS and a single byte packet
delimiter it makes most effective use of the available transport channel.

2.5 Robot Control Data

On top of our wireless protocol we implement the actual commands to be sent
to and received from our robots. Each command is prepended by a header struc-
ture. The standard header structure consists of 2 bytes. One byte identifies the
command ID and one byte the section ID. This is a logical separation to allow a
faster distribution of the commands. If the most significant bit of the command
ID is set, this packet uses an extended header. The extended header appends a
2 byte sequence number to the standard header. This sequence number is used
for retransmissions.

Reliable Transport Layer Neither the nRF24L01+ data link layer nor our
wireless protocol implements any retransmissions. A reliable transport layer thus
needs to be build on top of the wireless protocol. We implement a simple ac-
knowledgement with sequence numbers and fixed timeouts for retransmitting
lost packets. Each command can individually be flagged as reliable by setting
the most significant bit (MSB) in the command ID field.

If the robot receives a reliable command from the AI, it responds with an
acknowledgement command (ACK) which contains the sequence number of the
received command. The acknowledgement itself is not sent reliable.

If the robot wants to send a reliable command, it is first enqueued in a
reliable command queue. Only one unacknowledged reliable packet can be “in-
flight” at any time. This avoids problems with ACKs received out-of-order and
packets that would need to be removed from the sent queue out-of-order as well.
This is not possible with our FIFO structured queue. As soon as the reliable
queue contains a command and no other reliable command is being processed
the command is sent as usual. If an acknowledgement is received within 100ms

the command is removed from the queue and the next reliable command is sent.
If no ACK is received, the command is retransmitted.

Due to eventual retransmissions and the additional queue, a worst case trans-
port delay cannot be stated. It should therefore not be used for time-critical data.
We primarily use reliable commands for configuration options and parameters.
During a match, no reliable commands are used.

Match Commands and Feedback During a match only two commands are
used. The match control command shown in table 5 is sent from our Al to the
robots. The match feedback command shown in table 6 is sent from each robot
back to the AL

The match control command has 27 bytes in total. The packet header adds 2
more bytes. With COBS encoding one additional byte needs to be added in the
worst, case. Finally, the packet delimiter adds another byte. This leads to a total
size of 31 bytes. This fits perfectly into the wireless protocol transport layer and
ensures that the command always fits in one packet as long as no other data is
transmitted.

l Offset ‘ Size‘ Type Name ‘ Unit
0 6 |intl6_t [curPosition[3] mm
6 1 |uint8_ t| posDelay Q6.2 ms
7 2 |uintl6_ t| kickDuration us
9 1 |uint8_t | kickFlags mode, device
10 | 2 |uintl6_t|dribblerSpeed RPM
12 | 1 |uint8 ¢ skillld -
13 1 |uint8 t flags limitedVelocity
14 | 1 |uint8_t |feedbackFreq Hz
15 | 12 |uint8_t | skillData -

Table 5. Match Control command structure. Total size: 27B

The first two fields in the match control command can either be filled by
our Al or by the base station. The base station automatically inserts the last
position received from the SSL Vision if this field has not been set by the Al
The position delay is also filled out by the base station to let the robot know
how old the position information is. This is useful to interpolate the data on
the robot to the current time (based on the sensor fusion). The next three fields
are used to control the kicker and dribbler of our robot. The flags are used for
special situations, e.g. a stop situation where the robots are only allowed to move
at a limited speed. The feedback frequency indicates the rate at which match
feedback commands shall be sent.

The skill ID field indicates how the last 12 bytes of data shall be interpreted.
We noted that robot control data can change quite often during development.
This primarily concerns the movement. Some basic skills are e.g. a position

command which needs 6 bytes (XY position + orientation) or a local velocity
command. More advanced commands can even use a position and velocity and
occupy the full 12 bytes. This system also allows to implement local skills on the
robot. E.g. a penalty shooter can be implemented completely on the robot. The
skill data would contain the opponent’s goalie position and the ball position.
Unused bytes in the skill data are not transmitted. Consequently, the match
command is often shorter than 31 bytes.

[Offset[Size] Type | Name | Unit
0 6 |intl6_t | curPosition[3] mm
6 6 |intl6_t | curVelocity[3] =
12 | 1 |uint8_¢ kickerLevel \Y%
13 | 2 |uintl6_t| dribblerSpeed RPM
15 2 |uintl6_t| batteryLevel mV
17 | 1 |uint8_¢t |brrierKickCounter| -
18 | 2 |uintl6_t features bit-field
20 1 | uint8_t hardwareld -
21 | 1 [uint8_t| dribblerTemp x

2
Table 6. Match Feedback command structure. Total size: 22B

The match feedback command (table 6) is completly fixed and sent at a
rate determined by the match control command. The first two fields contain
the current position and velocity of the robot. These values are calculated by
our onboard sensor fusion. This data is very accurate due to the additional
local sensors (gyro, accelerometer, encoders) and allows to sent precise position
information to the AI even if the robot is currently not visible on the SSL Vision.

The next two values contain the current kicker capacitor voltage (up to 190V)
and the current dribbler speed. The battery level indicates the remaining volt-
age on the main battery. The barrier & kick counter value is a bit field. The
MSB indicates if the infra-red barrier in front of the robot is interrupted. The
remaining 7 bits contain a kick counter. Whenever a kick is executed, this value
is incremented. This allows the Al to determine if a kick actually occured.

The features field is a bit field as well. There is one bit for movement, straight
kick, chip kick, dribbler, and infra-red barrier. If the corresponding bit is set this
means that the subsystem is working properly. If the robot detects a damage
to a subsystem, the corresponding bit is cleared. The AI may then use this
information to dynamically reassign the robots’ role. E.g. a robot with a damaged
chip kicker should not be used for a throw-in.

The hardware ID is a unique identifier of each robot independent of its vision
ID. This is used to generate robot specific statistics. The dribbler temperature
is indicated by the last field. In close-contact situations the dribbling motor
can heat up very quickly. To prevent damage to the motor, the temperature is
reported to the Al

3 Publication

Our team publishes all their resources, including software, electronics/schemat-
ics and mechanical drawings, after each RoboCup. They can be found on our
website*. The website also contains several publications® about the RoboCup,
though some are only available in German.

References

1. LLC Allegro MicroSystems. Automotive 3-Phase BLDC Controller and MOS-
FET Driver, 2013. http://www.allegromicro.com/~/media/Files/Datasheets/
A3930-1-Datasheet.ashx?la=en.

2. US Digital. E8P OEM Miniature Optical Kit Encoder, 2012. http://www.
usdigital.com/products/e8p.

3. STmicroelectronics. STM32F405xx, STM32F407xx Datasheet, 2012. http://www.
st.com/web/catalog/mmc/FM141/SC1169/5515677/LN1035/PF252144.

4. STmicroelectronics. STM32F302xx, STM32F303xx Datasheet, June 2013. http:
//www.st.com/web/catalog/mmc/FM141/SC1169/SS1576/LN1531/PF253449.

5. STmicroelectronics. STM32F745xx, STM32F746xx Datasheet, December
2015. http://www.st.com/st-web-ui/static/active/en/resource/technical/
document/datasheet/DM00166116.pdf.

6. Nordic Semiconductor. nRF24L01+ Product Specification v1.0, 2008. http://www.
nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P.

7. Texas Instruments. DP83848C/I/VYB/YB PHYTER QFP Single Port 10/100Mb/s
Ethernet Physical Layer Transceiver, May 2007. http://www.ti.com/1lit/gpn/
dp83848c.

8. S. Cheshire and M. Baker. Consistent overhead byte stuffing. Networking,
IEEE/ACM Transactions on, 7(2):159-172, Apr 1999.

* Open source / hardware: https://tigers-mannheim.de/index.php?id=29
5 publications: https://tigers-mannheim.de/index.php?id=21

http://www.allegromicro.com/~/media/Files/Datasheets/A3930-1-Datasheet.ashx?la=en
http://www.allegromicro.com/~/media/Files/Datasheets/A3930-1-Datasheet.ashx?la=en
http://www.usdigital.com/products/e8p
http://www.usdigital.com/products/e8p
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1035/PF252144
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1035/PF252144
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1576/LN1531/PF253449
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1576/LN1531/PF253449
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00166116.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00166116.pdf
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P
http://www.ti.com/lit/gpn/dp83848c
http://www.ti.com/lit/gpn/dp83848c
https://tigers-mannheim.de/index.php?id=29
https://tigers-mannheim.de/index.php?id=21

