
PARSIAN 2017
Extended Team Description Paper

Mohammad Mahdi Rahimi, Mohammad Mahdi Shirazi, Maziar Arfaee,
Mohammad Amin Najaf Gholian, Amir Hossein Zamani, Hamed Hosseini,

Fateme Hashemi Chaleshtori, Nadia Moradi, Atousa Ahsani, Mahmoud Jafari,
Amin Zahedi, Parsa Abdollahi, Alireza Zolanvari and Mohammad Azam

Khosravi

Electrical Engineering Department
Amirkabir Univ. Of Technology (Tehran Polytechnic)

424 Hafez Ave. Tehran, Iran
{mmrahimi,mhmmdshirazi,maziar9033063,ahz.7597,hellihdhs,
hashemi96,nadiamoradi,ahsani,zahediamin,p.abdollahi,

alirezazolanvari,m.a.khosravi}@aut.ac.ir

Abstract. In this paper detailed description of Parsian robots’ hard-
ware improvement, as well as the software architecture with focus on
new improvements that have been made since last year, is represented.
Improvements and developments that seemed innovative and useful in
hardware like fault detection, two way communication and dribbler sys-
tem and also improvements in software such as pass and interception
skills’ behavior, adaptive attack strategy for regular game and reactive
offense and defense for free kicks will be discussed in detail.

Keywords: graph theory, automata theory, machine learning, machine
vision

1 Introduction

The Parsian small size team, founded in 2005, is organized by Electrical Engi-
neering Department of Amirkabir University of Technology. The purpose of this
team is to design and build small size soccer robots compatible with International
RoboCup competition rules as a student based project. We have been qualified
for eleven consequent years for RoboCup SSL. We participated in years 2008 to
2016 RoboCup competitions. Our most notable achievements was Parsian’s first
place in RoboCup 2012 SSL’s Passing and Shooting and RoboCup 2013 SSL’s
Navigation challenge. In this paper we first represent some mechanical changes
of our robots in Section 2.1 and then features developed for electrical design
in Section 2.2 and in Section 3 we discussed about software improvements in
control and behavioral level and at last introduce the log analyzer made in this
year in Section 3.4.



2 Hardware

2.1 Mechanical Design

Last year, our mechanical team started to design a new version of robots (Fig.
4) which has many benefits compared to the previous version (Fig. 1). In this
version, about 90% of parts had been changed mechanically and the details
is represented . The kicking system including flat kick and chip kick remains
unchanged. We use a cylindrical solenoid for flat kicking which can kick the ball
with the velocity up to 14 m/s and the chip kicking system is a flat solenoid.

Fig. 1. The previous version of Parsian robots

Power Transmission System: Propulsion power of the robots is supplied
by EC45 MAXON BLDC motors with an idle speed of 6720 rpm and nominal
torque of 97.1 mN.m and power of 50 W instead of the 30W MAXON motors
used in the previous versions. The power is transmitted to the wheels by a 3.6:1
gear transmission. In the gearbox, we use a spur gear attached to the motor
shaft and an internal gear for wheels. The structure of wheels is same as the
previous one.



Dribbler System: The previous version of our dribbler system had good per-
formance but because of the complexity of mechanical structure, it was very
difficult and time consuming to assemble the whole system and if there was a
problem, it took too much time to be fixed (Fig. 2). Therefore the main purpose
of the new design is simplicity along with good performance.

Fig. 2. Previous version of dribbling system

Dribbler system has three major duties that are (a) ball detection (b) ball
damping (c) ball spinning. In our robots, ball detection is handled by IR sensors
which is fixed in dribbler bases. Ball damping and good ball spinning depends on
each other. During ball spinning, the spinner pulls the ball into the dribbler with a
high rotational speed which cause a small displacement of dribbler arms and ball
towards the center of the robot that should be considered in dribbler designing.
In order to have an excellent spin, the ball has to be in contact with ground,
spinner and the chipper head during the spinning. So the point is optimizing the
dimensions with these two considerations. In the other hand, the best location
for spinning the ball into the dribbler is the top of the ball but due to the
existing rules, we should find the allowable contact point which is the nearest
location to top of the ball. Our new dribbler arm has one DOF which is a
rotational movement and therefore for the ball damping, we use a smooth torsion
spring. This spring also enhance the spinning performance because of vibration
absorption.

In this version of dribbler, T-motor MN1806 is used as spinning motor with a
maximum speed of 36000 rpm (which is in control with input voltage) instead
of MAXON EC16 motors. These new motors have some advantages and disad-
vantages in comparison to MAXON EC16 motors.

Advantages are (a) lower weight, (b) smaller size, (c) no need to gearbox, (d) very



Fig. 3. New designed dribbler system

low cost, (e) very low vibration and high stability in high speeds and (f) lower
sound and the disadvantage is lower torque.

The torque is transmitted to the spinning bar using pulleys and belt which has
less vibration. The transmission ratio is 16:28. In order to compensate for lower
transmitted torque, the rubber cover of spinning bar diameter was decreased
from 16mm to 10mm (Fig. 3).

Fig. 4. New concept of Parsian robots



2.2 Electrical Design

Our main board was designed for Robocup 2016 and that was explained by
details in Parsian 2016 ETDP [1] (Fig. 5). This year Parsian developed some
features such as two way communication and fault detection engine that is de-
scribed in detail in this paper.

Fig. 5. Parsian PCB boards

Two Way Communication: This year Parsian developed a new application
for manage robots health details and we need some important data for manage
robots behavior, therefore Parsian’s two way communication is upgraded. The
Packet sent from robot to server includes battery level, kick sensor, spin motor’s
current, robot ID, compass angle, health data and motor velocities. Previous year
two NRF24L01 had been used for two way communication on each robot but this
year it’s done using just one NRF and the robot switches NRF mode between
send and receive in certain duration of time to avoid data loss and data conflict
between the robots.

Fault Detection Engine: This year a fault detection engine is added to Par-
sian robots that detects faults like motor failure such as wiring or hall sensor
problems, battery, kick system and other failures. In case of emergency, this en-
gine stops robot, for instance when battery voltage is in critical level. Some data
that has been sent to main application are used for debug and maintenance some
parameters during a real game.



2 Way Compass

Fault
Detection

Kick
System

Capacitor
Fault

Charge
Fault

Mech.
Fault

Motor
System

Current
Fault

Hall
Fault

Join
Fault

Encoder

Com.
System

Data
Recive
FaultData

Send
Fault

Join
Fault

Battery
System

Kick
Fuse
Fault

Motor
Fuse
Fault

Low
Voltage
Fault

Spin
Detection

Kick
Sensor

Robot ID Velocities

Fig. 6. Diagram of two way communication and fault detection



3 Software and A.I.

3.1 Control

New Algorithm for Moving Ball Interception: One of the most common
problems in playing soccer is ball prediction and interception. This year Parsian
designed a new engine for them. In this method ball is modeled and the engine
can predict ball’s position and velocity in the near future, also robot’s abilities
(maximum velocity, acceleration and joint speeds) is known and the engine can
calculate required time for a robot to reach to a certain point. With these data,
the interception searches ball’s path with a fix step size (1 meter steps) to find
the points that a robot can reach to them before the ball, when first point is
found step size is reduced to 5 cm and a new search is began around the first
suitable point and the best point (the most reliable point) is chosen (Fig. 7).

Fig. 7. Search ball path to find the best point to intercept ball

Spin Pass: During a small size soccer game it happens often that the ball is
between two robots and they’re trying to find a way to pass or dribble. This year
Parsian produced a new algorithm to exploit this situation. In this situation the
robot needs to snatch the ball from its opponent and make a unique situation
to pass the ball to its teammate, so that the nearest opponent robot to the ball
can’t disturb its action. Therefore, the robot spins the ball with its maximum
speed and tries to rotate around a certain origin that blocks the opponent robot
to reach the ball, but the robot’s rotation and its direction depends on the spin
motor’s current. In other words, the code analyses the spin motor’s current and
if the robot completely owns the ball, full rotation procedure is began; otherwise,
the robot tries to rotate in small angles to catch the ball completely (Fig. 8, 9).



Fig. 8. Small rotation for snatch the ball Fig. 9. Complete rotation for pass

3.2 Progresses in Offensive Plans

Improvements in Regular Game Behavior: The Parsian’s offensive al-
gorithm during regular game is a combination of previous years behavior and
planner, that includes static planner used in 2015 [2] and dynamic behavior used
in 2016 [1].

1. Parsian 2015: Static Offense Planner

According to Parsian’s TDP [2] in 2015, we designed the regular game plans by
the visual-planner and define a single behavior for any situation and formation
in the field. The static planner’s main benefit was always following steps that will
score a goal and don’t play with the ball causeless. The problems that Parsian’s
static planner faced is listed below:

– There’s no coordination with the defensive team.
– There’s no plan for the situation that we don’t have ball possession (like

counter attack).
– Sometimes direct shot behavior was more effective compared with passing

the ball.
– There’s no plan for contended situations.
– It needs too many plans to cover all the situations and behaviors.

2. Parsian 2016: Dynamic Offense Behavior

Parsian’s dynamic behavior is designed in order to fix 2015’s issues and mostly
remove plan designing part by replacing an A.I. to generate plans. Here’s a list
of the solutions that dynamic behavior for static planner strategy:

– With dynamic assigning that we had in coach, any defensive agents needed
to coordinate with offense added to offense team and plan the role given.

– Dynamic behavior make plans according to the game situation and reactive
to opponent agent.

– There’s no need to design plan anymore.
– This play was configurable to determine each behavior.



The problem that dynamic behavior faced:

– The goal of this behavior is to keep playing not scoring goal.
– The probability to have successful pass was low:

1. Positions of passer and receiver agents was generated during the game
and we can’t tune pass skill for every situation.

2. We don’t fully profiled all robots’ pass skill.
3. This pass strategy should wait for the receiver agent to reach in receiving

area and it wasn’t fast enough.

So the result of this play with different configurations was two kind of attack:

– Mostly pass and fail at the end without scoring goal.
– Just keep forward attacking and positioning the agent stand in reflect posi-

tions.

And both behavior wasn’t what we want from our dynamic attack, so we tried
to use human intelligence in design and aiming plans to goal and use reactive
behavior to execute this plans considering game’s situations.

3. Parsian 2017: Adaptive Behavior with State Machine Designer

In This year, we focused on having a state machine that always end to score a
goal. The idea firstly brought forth in 2013 [3]. There’s two challenges, first we
need to define states and design the state machine and second we should find
the best edge to cross to reach the end points.

I Define States and Adaptive State Machine

States are defined as a condition that are clear and easy to detect and chang-
ing the state can be done by maximum one action for each of our agents. States
should cover all situations of the game and not be dependent on opponent agents’
position. Therefore we have full control on choosing states and changing them.
An adaptive state machine is a type of state machine, made of some states and a
relation between them, that can keep track of itself and use these data to make
a better decision for the next time. A state is a pair of formation of our agents
and ID of the ball owner agent. Note that this machine is used for attacking, so
the ball is in our control and when we lose the ball, the program jumped out
of the machine. The terminal states are situations that the ball is in opponent
goal. When we get the ball, our formation is detected and get matched with one
of our states. Then state machine change from one state to another so all the
formations we get will be matched with one of the predefined states. States are
designed by ssl-fedit and next, based on a configuration file, we build the state
machine’s edges.



II Giving Weights to Edges and Finding the Best Path

Edges is put between the current state and other neighbor states and weights is
given to them to choose the best. Weight of an edge is sum of reactive, config-
urable and adaptive parameters:

– Reactive weight depends on opponent robots’ positions and opportunity of
kicking in that state.

– Configuration weight is given to an edge by developer. With this our attack-
ing strategy can be set manually before the game.

– Adaptive weight is given to a plan based on experience, for instance when a
plan fails repeatedly, its adaptive weight decreases.

Reactive Behavior for Free Kicks: According to Parsian’s 2016 ETDP [1]
we used visual-planner to design static and time based free kicks plans, for
this year we’ve made some changes inside visual-planner and free kick behavior
that make plans more flexible and reactive to opponents. In the following part,
changes made in visual-planner is presented. After that we describe how we take
advantages of them.

1. Visual Planner Changes

– Save and export plans with JSON format for easy human-readability and
fast changing.

– Send plan book over network using Google Protocol Buffer.
– Add chance parameter to each plan.
– Design open-end plan (not determine receiver agent).

2. Plan Execution

– Reading plan over network, enable us to hot-swapping plans for editing.
– Execute plan by events instead of time for more coordination specially for

pass and receive.
– If the plan is designed open-end then choosing the final receiver agent de-

pends on opponent’s marks and defense agents and it makes plans more
unpredictable.

3.3 Defense Plans Improvements

The most basic aim of defending is preventing from giving opportunity to oppo-
nent agents to score a goal. In last year we only used the Zone plan for defending,
but this plan hadn’t enough efficiency, So we write the new algorithms Block pass
and Block shoot tested in different competitions successfully, and also we have
created a management system to choose one of these three plans and use them in
suitable situations which result in having a defense system that varies according
to the opponent offensive formation that can be changed in the middle of the
game at once. This switching system is based on following parameters:



– Opponent’s pass, shoot and movement skills.

– Areas which opponent team trying to attack from.

– Type of plans they use in play off.

Fig. 10 and 11 represent how Block pass and Block shoot works (we are the blue
agents):

Fig. 10. Block shoot

Dynamic Assigning for Agents and Plans: In previous years we choose
defense agents after each stop time, this make it difficult to cover goal during pass
whereas we could not reach to definite point on time. The solution we offered is
using Dynamic robot role assignment by considering the ball and our agents.

Attack Plans by Using the Defense and Goalkeeper: Since the Parsian
Robotic Team is mostly focused on the defensive plans in proportion rather
than offensive plans, we decide to make a big change in offense strategy which is
explained in detail in Section 3.2 . Also we decided to start offensive plans from
defense in order to throw the ball from our penalty area with the determined
aim to make a offensive plan.

For instance when ball is in our penalty area and is caught by goalkeeper,
goalkeeper’s role changes to playmaker and stays in this role. With this role
goalkeeper robot is inside offensive team having more coordination with offensive
plan. After playmaking function is done, the role of goalkeeper changes back and
return to defensive team [4].



Fig. 11. Block pass

3.4 Log Analyzer

We use our specified logger to store match events and some other data that can
help finding out useful information about the match. Our Logger encompassed
vision data, referee commands and logging data. Vision data log are the filtered
vision data we generate in our code. We also store referee commands therefore
we can see them while replaying the logs. Debugs and draws are a part of our
logging data to simplify debugging. The data we used to store were difficult to
be analyzed so we created new log files for robots info, control data, behavioural
data and robot commands to store useful data in a better format.

We analyze these log files to make report and turn them into useful knowledge
to use them in (a) robot (b) control (c) behaviour (d) coach levels.

(a) By analyzing robot info and robots commands we collect and merge infor-
mation about robots. For example how long our batteries can work or which
commands cause harm.

(b) In control level we use control data and robot commands for profiling motion
and kicks.

(c) In behavioral level we analyze our plans and weight them; for instance after
each free kick we can make a report of our failed shoots and the places the
robots has kicked the ball.

(d) In coach level we analyze general match information such as ball possession,
the number of free kicks and percent of ball existence in each region of field.



4 Publication

4.1 ssl-visual-planner 1

A user friendly software to arrange both dynamic and static plans for SSL. Most
important improvements from this year is exporting plan in JSON format and
send them over network.

4.2 ssl-fedit 2

ssl-fedit is an open-source formation editor that presented in Parsian’s ETDP
in 2014 [5] and originally developed by Hidehisa Akiyama [6]. With Delaunay
triangulation function expression model, developer can intuitively adjust the
placement of the player on the GUI. We propose a modification to implement it
in the offensive situation positioning of our small size soccer robots.

4.3 grSim 3

The well known small size league simulation developed in Parsian [7]. This year
we’ve made some changes and improvements such as four camera functionality
with overlaps, compatibility with macOS, using a new ssl-vision protobuf and
also fixing some physical parameters.

Our future work for grSim is to make it a continuous integration framework
to test each feature while developing them and also add mix-team control on
robots that enable more teams to get ready for this technical challenge.

5 Conclusion

This year our hardware’s changes aim to stabilize robots with detect and mon-
itoring their faults. In software part we improved some of our skills’ behavior
used mostly during the game such as pass and interception. In defense plans,
we developed our last year defense by adding some new plans and a manage-
ment system to handle them. In attack we have created a new system, based
on our previous years experiences that needs more effort to be completed. Also
we present log analyzer as a new feature to collect useful knowledge about our
behaviors. Finally we represent our publication and future works that can be
done, mostly focused on grSim to make it more flexible and use it for continuous
integration framework.

1 https://github.com/hamidrezakks/ssl-visual-planner
2 https://github.com/mahi97/ssl-fedit
3 https://github.com/mani-monaj/grSim



References

[1] M. M. Rahimi, M. M. Shirazi, P. Dajkhosh, A. Zolanvari, M. Arfaee, H.
Kazemi Khoshkijari, A. Abbasi Fashami, A. Saeidi Shahrivar and M. A. Khos-
ravi, ”Parsian Extended Team Description for RoboCup”, 2016.

[2] A. Zolanvari, M. M. Shirazi, S. P. Dajkhosh, A. M. Naderi , M. Arfaee,
M. Behbooei, H. Kazemi Khoshkijari, E. Tazimi, M. M. Rahimi and A. Saeidi
Shahrivar, ”PARSIAN Team Description for RoboCup”, 2015.

[3] S. M. Mohaimanian Pour, V. Mehrabi, A. Saeidi, E. Sheikhi, M. Kazemi,
A. Pahlavani, M. Behbooei and P. Ghanbari, ”PARSIAN extended team de-
scription paper for RoboCup”, 2013.

[4] J. P. Mendoza, J. Biswas, D. Zhu, R. Wang, P. Cooksey, S. Klee and M.
Veloso, ”CMDragons 2015 Extended Team Description Paper”, In RoboCup,
2016.

[5] A. Saeidi, M. H. Malmir, M. M. Shirazi, M. Behbooei, S. Boluki, M. Kazemi,
S. M. Mohaimanian Pour, P. Ghanbari, S. Jamshidiha, P. Dajkhosh and A. Za-
hedi, ”PARSIAN team description paper for RoboCup”, 2014.

[6] H. Akiyama,I. Noda, ”Multi-agent positioning mechanism in the dynamic en-
vironment”, Springer Berlin Heidelberg, In RoboCup 2007: Robot Soccer World
Cup XI ,2008.

[7] V. Monajjemi, A. Koochakzadeh, S. Shiry Ghidary, ”grSim RoboCup Small
Size Robot Soccer Simulator”, Springer Berlin Heidelberg, 2011, pp. 450-460

[8] J. P. Mendoza, J. Biswas, P. Cooksey, R. Wang, D. Zhu, S. Klee and M.
Veloso, ”Selectively Reactive Coordination for a Team of Robot Soccer Cham-
pions”, In Proceedings of AAAI-16, 2016.


	PARSIAN 2017Extended Team Description Paper

