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Abstract.  MCT Susano Logics have been taking part in the RoboCup Japan 

Open since 2011 and in the international RoboCup since 2013.  This year, we 

rewrote our AI software in Python to shorten the coding time and to acquire 

adequate performance test time.  We adopt a Kalman filter to eliminate statistical 

noise, to estimate lost samples, and to compensate for the delay of SSL-Vision.  

The chassis of the robot was modified to improve the linearity of the moving of 

the robot. 
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1 Introduction 

MCT Susano Logics was founded in 2011, and the team was named after a hero of 

Japanese mythology, Susano-no-mikoto.  Susano-no-mikoto was a brother of 

Amaterasu, the goddess of the Sun, who exterminated a huge dragon, which had an 

eight-forked head and an eight-forked tail.  Our team was named with the hope to win 

against strong and intelligent dragons in SSL.   

Fig. 1. MCT Susano Logics’ robot 
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Susano Logics have been taking part in the RoboCup Japan Open since 2011 and in 

the international contest, RoboCup, since 2013 in Eindhoven, Netherlands.  Our robots 

have a distinctive transparent shell (Fig. 1), but the specifications of robots and 

performance of AI are not at all outstanding.  This year, we improved both our software 

and hardware.  We rewrote the AI program to shorten the coding time and to acquire 

adequate performance test time. The chassis and omni-wheels of the robot were 

modified to improve the acceleration and linearity of the robot moving.  This TDP 

describes these improvements.  

2 Software Structure 

2.1 Overview of Control Software 

From our team’s start in 2011, Susano Logics’ control software had been developed in 

C++ language.  C++ is a suitable language for system programming and the performance, 

efficiency and flexibility of it are strong.  However, it requires discipline to understand 

and code, so it is difficult for new team members.   

We decided to change the AI code from C++ to Python 3 in 2016.  We adopted 

Python for programming AI, because its syntax allows programmers to write clear and 

highly readable codes.  Frequent additions or alterations of code are required to improve 

AI.  Adequate program tests after the additions or alterations are necessary for software 

development.  However, we spent a long time for creating C++ code.  The shortage of 

development time resulted in inadequate program tests, therefore, unanticipated 

situations (e.g. SSL-Vision’s misreading of a robot ID) caused our AI to go out of control 

during games.  Improved productivity brought by Python bring us much more time for 

testing the code, which would reduce bugs.   

Figure 2 shows the structure of our control software.  The program consists of four 

modules of referee, camera, AI, and robot control.  The allows in the diagram of Fig. 2 

indicate the data flow between the modules; the referee and camera modules are the 

publishers, and AI and robot control modules are subscribers.  The camera module 

receives robots and a ball X-Y coordinates from SSL-Vision, and uses a Kalman filter 

to eliminate statistical noise, to estimate lost samples, and to compensate for the delay 

of SSL-Vision.  Then the module publishes filtered coordinates to AI and robot control 

modules.  The referee module gets commands from the SSL referee box and publishes 

it to the AI and robot control modules.  The robot control module calculates the direction 

and speed of the robots from coordinates, which are determined by the AI module.  The 

module limits the robot speed while the referee module sends stop game mode. 

2.2 Behavior Tree for the AI Module 

We are now programming our AI with behavior trees [1].  Behavior trees is a popular 

method for creating game AI, which uses nodes to select and execute robot commands.  

Figure 3 shows a part of our behavior tree.  The program starts from the top (root) of a 

tree, then checks each node from the left first.  In the example of Fig. 3, a process starts 



from the top selector, which selects a play.  Then the AI executes the sequence, 

condition, go ahead, parallel, filter, left-turn, and finally, go back.  Branch nodes 

(sequence, parallel, filter) select tactics for child nodes.  Leaf nodes (condition, go 

ahead, left-turn, go back) select commands to robots.  Each node has a state of success, 

failure, or running.  For example, the branch node sequence executes child nodes of 

condition and go ahead, until all child nodes reach a failure state.  Condition nodes 

check the availability of intercepting the ball.  When the state become a “success”, the 

AI sends an intercepting command to a robot. 

Fig. 3. Part of a behavior tree 
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Fig. 2. Structure of control software  

 



Since Python is an interpreted language, programs require a relatively long 

processing time.  Our AI have not succeeded to handle 6 robots within a control interval 

of 16.7 milliseconds on a Dell Inspiron 15 5000 (CPU: Intel Core i7-5500U 2.4GHz, 

memory size: 8GB) with Linux OS (Xubuntu 14.04).  We are now trying to shorten the 

processing time.  We gave up using our multi-particle filter [2], because the filter 

consumes more than half of the control period.  So we adopt Kalman Filter for the ball 

and robots position estimation. 

2.3 Kalman Filter for Camera Module 

A Kalman filter is an algorithm that estimates the belief  at time  from a 

series of measurements  and a state model.   

 {
𝒙(𝑘 + 1) = 𝒇(𝒙(𝑘)) + 𝒃𝒗(𝑘)

𝒚(𝑘) = 𝒉(𝒙(𝑘)) + 𝒘(𝑘)
              (1) 

Where is the system function,  is the observation matrix,  is the constant vector, 

 is the system noise, and  is the observation noise.  The output 𝒚(𝑘) shows the 

coordinates of the ball position [Px , Py]. 

 A four-dimensional state vector x indicates the coordinates of the ball position [Px , 
Py] in millimeters and ball speed  [Vx , Vy] in meters per second. 

 𝒙(𝑘) = [𝑃𝑥(𝑘) 𝑃𝑦(𝑘) 𝑉𝑥(𝑘) 𝑉𝑦(𝑘)]𝑇 (2) 

A system model for the filter is: 

 𝒙(𝑘 + 1) = [

1 0 𝛥𝑡 0
0 1 0 𝛥𝑡
0 0 1 0
0 0 0 1

] 𝒙(𝑘) + 𝒃𝑣(𝑘) (3) 

Time step 𝛥𝑡 is the control interval of 1/60 second.  System noise v and observation 

noise w  is the normal distribution with a variance of .  These values were determined 

experimentally. 

 𝜎𝑤
2 = diag(0.6 0.06 11 1.1)  (4) 

Constant  was also determined experimentally at 0.1.  

Time delay from transmitting a robot move command to data receiving from SSL-

Vision [2], which was running on a computer (Faith Progress MT P86000N/DVR, CPU: 

Intel Core i5-2500 3.3GHz, memory size: 8GB) with four cameras (Allied Vision 

Stingray F-046C) was measured by counting the control cycles of our AI.  The average 

delay was 6±1 cycles, which corresponds to 96±16 milliseconds.  The average dead 

time of our robot from command reception to start moving was measured from pictures 

taken with a digital camera (CASIO EX-FH25) at the high speed mode of 1000 frames 

per second was 42.9±5.6 milliseconds.  Thus, the delay of SSL-Vision was 53±16 

milliseconds.   



For compensating this 53 milliseconds delay, the camera module publishes 

compensated position estimates.  The compensated coordinates  and  are 

the sum of estimates  and  and products of velocity vectors and 53 

milliseconds. 

 𝑐𝑃𝑥(𝑘) = 𝑃𝑥(𝑘) + 53𝑉𝑥(𝑘) (5a) 

 𝑐𝑃𝑦(𝑘) = 𝑃𝑦(𝑘) + 53𝑉𝑦(𝑘) (5b) 

2.4 Shoot Destination Prediction Filter 

The prediction of a ball destination is important for the goalie to defend a goal shot.  The 

ball arrival position is the point of intersection between the goal line and the motion 

vector line passing through the estimated ball positon of time .  However, the motion 

vectors, which were calculated from the difference of an estimated ball position by the 

Kalman filter fluctuates widely.    

To get a precise estimation, we tested three additional filters, a first-order low pass 

filter (LPF), a second-order LPF, and an average filter.  The prediction algorithm 

distinguishes a kick when the ball speed increased more than 0.5 meter per second 

.  The motion vector of time  is not accurate, because the ball was kicked between 

time  and previous .  Thus, an additional filter starts prediction from 

time . 

The ball destination is calculated from the following equations.  The input of filter, 

which is the estimate of Kalman filter is 𝑃𝑦, output of the filter is 𝑃𝑦̂, sampling interval 

Δt is 1/60 second, and cutoff frequency of the first-order LPF fc is 1.67 Hz. 

(1st-order LPF)    𝑃𝑦̂(𝑘) = 𝑃𝑦̂(𝑘 − 1) + {𝑃𝑦(𝑘) − 𝑃𝑦̂(𝑘 − 1)}
𝛥𝑡

2𝜋𝑓𝑐
 (6) 

(2nd-order LPF)  𝑃𝑦̂(𝑘) = −𝑏1𝑃𝑦̂(𝑘 − 1) − 𝑏2𝑃𝑦̂(𝑘 − 2) 

                                      +𝑎0𝑃𝑦(𝑘) ( )  (7) 

(Average filter) 𝑃𝑦̂(𝑘) = ∑
𝑃𝑦(𝑡)

𝑡

𝑘
𝑡=1  (8) 

The initial values of time  are set as 

. 

Figure 4 shows one of the simulation results when a robot kicks a ball at a speed of 

8 meters per second.  In order to intercept the shot, the goalie must stay within±40 

millimeters of the ball destination before the arrival.  The Kalman filter output of time 

 (0 millisecond) was over 200 millimeters, because the motion vector was not 

accurate as mentioned before.  The filters start at  (17 milliseconds).  Both first-

order LPF and average filter outputs converged to 40 millimeters at 83 milliseconds after 

the kick, but the average showed fluctuation.  The response of the second-order filter 

was too slow.  Therefore, we chose the first-order LPF for the shoot destination 

prediction filter. 



Fig. 4. Error between ball arrival and the predicted position at an eight meters per second shot 

3 Robot Hardware Improvements  

One of the problem of our robot was that the direction of movement fluctuated during 

low-speed driving.  This phenomenon deteriorate the correctness of kicked ball direction. 

We thought that the touch and release of small discs around the wheel to the ground 

caused load change to the motors.  This load change caused motor speed fluctuations.  

Therefore, we designed a new omni-wheel with more small discs.   

 

 

 

 

 

 

 

 

 
(a) Old type omni-wheel with 15-discs           (b) Components of the omni-wheel 

 

 

 

 

 
(c) Components of a small disc  

Fig. 5. Old type omni-wheel 
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Figure 5 shows our old type omni-wheel, which has 15 small discs.  The small discs 

were composed of two flanged bearings with two O-rings.  The size of the omni-wheel 

is 53 millimeters in diameter, 13 millimeters in width, and 60 grams in weight. 

Figure 6 shows our new type omni-wheel, which has 21 small discs.  The width of 

the small disc was narrowed to equip more discs.  Therefore, the small discs were 

assembled from a flanged bearing, an X-ring, two washers and a knock pin. For weight 

reduction, inner wheel part were made from nylon.  The size of the omni-wheel is 55 

millimeters in diameter and 13 millimeters in width, and 57 grams in weight. 

(a) New type omni-wheel with 21-discs          (b) Components of the omni-wheel 

(c) Components of a small disc 

Fig. 6. New type omni-wheel 

Figure 7 shows our old and new robot frames.  The thickness of a bottom plate was 

reduced from 5 to 3 millimeters.   The shape of a middle plate was optimized to support 

motor attachment units. The total weight decreased from 2730 grams to 2406 grams.  

 

 

 

 

 

 

 

 

 

 

 
(a) Old type chassis and omni-wheels      (b) New type chassis with new type omni-wheels 

  Fig. 7. Robot frame 



Figure 8 shows fluctuations in robot’s directions running at our lowest speed of 0.12 

meter per second.  The directions of the robot were measured with SSL-Vision and the 

results indicated in Figure 8 were raw data from the vision.  Standard deviations of a 

two-second running was 0.53 degrees for old robots, 0.30 degrees for new type chassis 

with old type omni-wheels, and 0.33 degrees for new type chassis with new type omni-

wheels.  The new type omni-wheel did not improve the ability to hold a straight line. 

The ability was improved by the reduction of the robot weight.   

  Fig. 8. Robot direction running at our lowest speed of 0.12 meter per second 

Figure 9 shows the experimental results of the robot speed from a stop to 2 meters 

per second.  The velocities of the robot were measured with SSL-Vision and the results 

indicated in Figure 9 were raw data from the vision.  The acceleration of the new type  

chassis with old type omni-wheels showed an 11 per cent increase compared to that of 

the old type.  This is because of the 11 per cent reduction of weight.  The acceleration of 

the new type wheel was lower than the old type.  This is because of the diminution of 

the contact area of wheel to the field. 

  Fig. 9. Robot speed from a stop to 2 meters per second 
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The new type omni-wheel showed no improvement.  Therefore, we adopt the new 

chassis with old-type omni-wheels for the 2017 robot. 
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