
RoboTeam Twente
Extended Team Description Paper 2019

Simen Bootsma, Lukas Bos, Cas Doornkamp, Koen Hertenberg, Rolf van der
Hulst, Barış İmre, Emil Kerimov, Inkeri Kollmann, Thijs Luttikhuis, Freek
Nijweide, Alice Petry, Antonio Sanchez Martin, Rob Verbeek, Pepijn de Vos,

and Selina Zwerver

RoboTeam Twente
University of Twente (UT), Enschede, the Netherlands

De Hems 10, Bastille 304, 7522NL, Enschede, the Netherlands
Website: https://roboteamtwente.nl
Contact: info@roboteamtwente.nl

Abstract. This paper presents proceedings of RoboTeam Twente, the
Small Size League (SSL) robot soccer team of the University of Twente,
intending to participate in the RoboCup 2019 in Sydney, Australia. This
paper will focus on the improvements to stability and modularity in the
system and the adjustments made to increase ball and robot control.

https://roboteamtwente.nl


2 RoboTeam Twente

1 Introduction

RoboTeam Twente was founded at the University of Twente in 2016 and partici-
pated in the RoboCup for the first time in 2017 [1]. The primary goal is to inspire
and innovate in the field of robotics and artificial intelligence. Participation in
the RoboCup highly stimulates constant improvements in these areas.

This paper presents the technical details of the recent improvements in the
software and hardware with respect to the design of the previous year, described
in the Team Description Paper (TDP) 2018 [2]. In the following sections, the
improvements in motion control, ball control and tactics are discussed as well as
findings on using a different robot detection system. All design choices are made
to provide a stable and reliable system for the next team and with the thought
that other teams are able to adopt parts of the system, making the SSL more
dynamic and challenging.

2 Robot specifications

Table 1: Robot Specifications.
Robot 3.0

Dimension ∅179× 149 mm
Weight 2160g
Ball coverage 20%
Driving motor Maxon EC-45 flat 30W
Dribbling motor Comfortably Numb Maxon DCX 19s
Geneva motor rf-370ca-15370
Wheel diameter 55mm
Wheel gear ratio 2:5
Encoder MILE 1024 CPT
Dribbling bar diameter 10mm
Dribbling bar length 71mm
Microcontroller STM32F417VGTx
Ball sensor zForce AIR Touch
Motor controller LB11697V
Battery type 3S3P 11.1V LiPO

3 Electronics

During the 2018 RoboCup it was evident that ball control was insufficient. This
was partially due to unforeseen consequences of the electronics design. The main
culprits were the motor drivers, which did not allow fine robot control, and
the ball sensor, that did not detect the ball accurately in all positions. The
improvements regarding these points are addressed in this section.



Extended Team Description Paper 2019 3

3.1 Motor driver

Previous motor drivers were designed modular to facilitate rapid swapping of
faulty circuits. This required drivers of small size and few inputs. The drivers
were realised with the DRV10970 IC. This chip, however, limits the output cur-
rent to 1.5A. It furthermore causes a cut-off at PWM values under 10%. As a
result, the robots proved unable to drive at low velocities, causing non-linearity
in the system, resulting in poor robot control.

The current motor drivers are designed with equal modularity in mind, oblig-
ing size restrictions and using the LB11697V chip [3] as the main motor con-
troller. The drivers can currently deliver twice the current of the previous de-
sign, setting a need for external power transistors, which occupy a large area
and increase design complexity. This is mitigated by using a combined p and n
channel MOSFET. The selected external power driver is the PMCPB5530X [4]
p/n channel MOSFET with a small footprint, manufactured by Nexperia.

The resulting circuit has higher and better controlled power output, thereby
allowing lower motor speeds, leading to less complicated robot control and
quicker reactions to changes in the game. The resulting circuit is shown in Fig-
ure 1.

Fig. 1: Current motor driver using the LB11697V and PMCPB5530X chips.

3.2 Ball sensor

The previous TDP [2] introduced the zForce AIR Touch ball sensor, which fea-
tures are listed in Table 2. The sensor is intended to work in addition to the
main vision system and supply more accurate data about the position of the
ball when it is near the front of the robot. The sensor was implemented, but not
used to its full potential due to its position in the robot. This will be further
described in Section 4.1.



4 RoboTeam Twente

The sensor runs on customised firmware, as the standard version has a delay of
approximately 10ms in active tracking mode and 16-46ms delay when idling. The
delay is reduced by assuring the sensor never enters the idle state and ignoring
pre-filtering, at the cost of the input accuracy. Additionally, overall quality and
speed of measurements are improved by utilising available functionalities of the
sensor, such as size filtering, adaptation of the refresh rate and search area
reduction. Utilising these capabilities of the sensor, the robot is able to determine
the speed of the ball when receiving it and its kicking power can be adjusted
correspondingly to ensure more accurate passing and shooting. Ball location
accuracy is additionally increased, which can be used to adjust the positioning
of the robot for reliable kicking. Shorter frontal vision range limits the extent of
acquiring additional ball information.

Table 2: zForce AIR features.
zForce AIR features [5]

Accuracy < 7.5 mm
Resolution 0.1mm
Scanning frequency bla Max 600 Hz
Search area 40 mm x 72 mm
Interface I2C

4 Mechanics

The current mechanical design focuses on improving ball handling and ball con-
trol by incorporating the previous mentioned ball sensor and altering the mech-
anisms used to kick, chip and shoot the ball. The improvements to those mech-
anisms are individually discussed in this section.

4.1 Ball sensor

The ball sensor described in Section 3.2 has a maximum frontal vision range
of 4cm and 7.2cm sideways. The placement of the ball sensor in the previous
design [2] proved to be sub-optimal, since frontal vision of the robot was limited.
In the current design, the ball sensor is mounted horizontally, facing the ball at
a height just below its middle point, as shown in Figure 2. The ball sensor is
placed between two polyoxymethylene (POM) plates that fit into the chipping
mechanism. The chipper arms are shaped to curl around the ball sensor (see
Figure 3), limiting the sideways vision field by approximately 15%. The chipper
structure is rigidly fixed to the bottom plate of the robot for the ball sensor to
rest in a stable position.



Extended Team Description Paper 2019 5

Fig. 2: Position of the ball sensor.

Fig. 3: Side view of the chipping and kicking mechanisms.



6 RoboTeam Twente

4.2 Ball handling

The plunger for the chipping mechanism is made of POM and the chipper plate
of sheet metal. A lever arm is used to chip the ball. To lift the ball, the solenoid
plunger is pulled inside the solenoid, meaning the plunger shoots back. The lever
arms of the chipper contain a cavity, in which a rod connected to the chipper
serves as a linear guide to rotate the chipper arms. A spring ensures that the
chipper plunger returns to its original position.

The dribbling structure is hinged to the chipping structure. When accepting
the ball, the dribbling structure can slightly rotate, allowing optimal ball recep-
tion. Two o-rings are clamped between the dribbling and chipping structure to
allow rotational damping. A gear train is added between the dribbling motor
and the dribbling bar to optimise the rotational speed and torque transmission.

The plunger for the kicker solenoid is made of POM, meaning the kicking
plate is part of the plunger. The solenoid is mounted onto the Geneva plate
(described in Section 4.3). The kicker plunger is pushed back into the original
position after kicking using springs on both sides, similar to the design by ER-
Force [6] [7]. A screw set in the front solenoid mount prevents the plunger from
falling out of place.

4.3 Geneva

The Geneva mechanism was introduced to the design in the previous TDP [2].
It allows robots to kick the ball at an angle, giving the team an advantage since
ball direction is unpredictable. Previously, a motor powered the Geneva drive via
a gear train. The thickness of the gears caused grip loss, making the mechanism
obsolete. In the current design, the Geneva mechanism is directly driven by
the motor, similar to the design of Op-AmP [8]. The comparison between the
previous and current mechanism is shown in Figure 4.

(a) 2018 Geneva (b) 2019 Geneva

Fig. 4: Comparison between the previous [2] and current Geneva mechanism.



Extended Team Description Paper 2019 7

5 Motion control

A crucial feature for a soccer robot is the ability to reach the desired position
while avoiding obstacles and maintaining the highest possible velocity. In the
previous years, obstacle avoidance used virtual forces [1] [2]. The robot moves in
a straight line towards the desired position and when encountering an obstacle,
is given an additional velocity vector such that the robot moves around it. This
method works sufficiently for small distances and is intuitive, but proved sub-
optimal. Therefore, motion control is improved by calculating a short, smooth
and collision free path in advance. This path is determined using a Voronoi
diagram and Bézier Curves.

5.1 Voronoi diagram

A Voronoi diagram divides a plane into regions in which each region contains
one of the objects that the diagram is generated of [9]. A region consists of
all possible points that are closer to the object than to any other object. To
obtain a Voronoi diagram of a set of objects, one must construct the Delaunay
triangulation [10] and determine the Voronoi diagram using the intersection
points of the perpendicular bisectors of the resulting triangles (see Figure 5). The
resulting diagram contains a set of nodes connected by segments with maximum
distance to objects, along one can construct a safe path from one position to
another.

(a) Input (b) Triangulation (c) Voronoi Diagram

Fig. 5: Overview of the construction of a Voronoi diagram [11].

The objects represent the positions of all robots on the field. The objects are,
however, not connected to the Voronoi diagram itself. This causes a complication
in the next step - the construction of the path (see Section 5.2), that can be solved
by creating an additional segment on the existing Voronoi diagram that connects
the robot that has to move along the path to a so-called orientation node. The
orientation node is the intersection between the orientation vector of the robot
and the segment of the surrounding polygon that is in front of this vector (see
Figure 6). A similar segment is created for the connection of the ball position to
the diagram and in this case the desired end orientation of the robot is used.



8 RoboTeam Twente

(a) Construction (b) Included segment

Fig. 6: Construction of the orientation node in which the green dot, black arrow
and blue dot indicate the start position, orientation vector and orientation node
respectively.

5.2 Construct path

The next step is to construct a path using the nodes and line segments of the
Voronoi diagram. This path must be simultaneously as short and far away from
objects as possible. To compromise between both requirements, weights are given
to the segments based on the distance between objects’ surrounding segments
and orientation. Combined with the distance to the start and end position, a
heuristic is created that is used in the path-finding algorithm A* [12]. Compared
to other search algorithms such as Dijkstra’s algorithm [13], A* is most suitable
for this application since it solely propagates towards one target position and
does not explore other directions, decreasing calculation duration.

5.3 Smooth path

The final step is to smoothen the constructed path to ensure the robot can follow
the path with optimal velocity. The smoothing is performed using Bézier Curves
as described in [14] since they are easily controlled by placing so-called control
points. An important property of the Bézier Curve is that it always lies within
the convex hull of its control points, meaning it is guaranteed the curve will not
collide with objects, as long as there are none in said convex hull. The control
points are placed on the path using Algorithm 1, to satisfy this constraint. This
process is shown in Figure 7 in which it is shown that no objects are in the
convex hulls of control points.



Extended Team Description Paper 2019 9

Algorithm 1 Compute positions of control points
Input: A set of path nodes N
Output: A set of control points C for every curve
1: C ← {}
2: for i← 0 to N .size do
3: if C.size < 4 then
4: C ← C ∪Ni

5: else if isObstacleInConvexHull(C ∪Ni) then
6: P ← Ni

7: while isObstacleInConvexHull(C ∪ P ) do
8: P ← Ni−1+P

2

9: end while
10: C ← C ∪ P
11: createCurve(C)
12: clear C
13: C ← P ∪Ni

14: else
15: C ← C ∪Ni

16: end if
17: end for

(a) Voronoi Diagram (b) Constructed Path (c) Bézier Curve

Fig. 7: Construction of the path from a Voronoi diagram in which the green and
red dot represent the start and end position respectively.

6 Software

Previous competitions showed that the software running robot tactics and decision-
making processes was neither reliable nor maintainable. Therefore, the entire
code base for these processes is rewritten. A new system is designed, which serves
as a direct replacement for the old code base and improves the performance of
the entire system while simultaneously adding a clear structure that allows fu-
ture extensions. The new code base can be found on: https://github.com/
RoboTeamTwente/roboteam_ai. In this section, the improvements in the robot
behaviour are discussed, as well as potential machine learning applications and
an alternative robot detection system.

https://github.com/RoboTeamTwente/roboteam_ai
https://github.com/RoboTeamTwente/roboteam_ai


10 RoboTeam Twente

6.1 Robot Behaviour

Similar to the previous system, behaviour trees [15] are used as a language to
provide tactics and strategies during the game. However, a big change this year
is the scoping approach to the trees. Since every branch of a tree is a valid tree,
certain branches that represent a specific behaviour or entity are considered ‘sub-
trees’. As explained below, these sub-trees can take the form of role trees, tactic
trees, and strategy trees.

Behaviour trees, as before, are constructed of three different nodes. Compos-
ites, that have multiple children, decorators, that have a single child, and leafs
that have zero children. Naturally, leafs are the skills and conditions that dictate
direct behaviour on the robots. The composites and decorators change the flow
of execution in the trees and compose different logic using the same blocks. An
overview of the control flow nodes is given in Table 3.

Table 3: Control Nodes in Behaviour Trees [15]
Composites

Selector Runs each child in order. If a child is successful, the node is
as well.

Sequence Runs each child in order. If a child fails, the node does as
well and the other children are not ticked.

Parallel Sequence Runs each child simultaneously.
Memory Selector Equal to Selector, but keeps information about the last tick.
Memory Sequence bla Equal to Sequence, but keeps information about the last tick.

Decorators
Failer Runs the child but fails nonetheless.
Inverter Runs the child and inverts the result.
Repeater Repeatedly runs the child for a given amount.
Succeeder Runs the child and always returns success.
Until Fail Runs the child until it fails.
Until Success Runs the child until it succeeds.

The team behaviour is placed into one behaviour tree called the strategy tree,
whose branches are represented in tactic trees (see Figure 8). The latter trees
dictate the behaviour of one or more robots that cooperate in a similar role.
An example of a tactic could be the attack, in which three robots cooperate
in order to score. Before sending robot commands, a decision that dictates the
behaviour of one robot must be made. One robot in a tactic tree is represented
by a role tree and roles are assigned to the actual robots (see Figure 9). The
division of roles over the robots will be discussed further on. An example of a
role tree is shown in Figure 10.



Extended Team Description Paper 2019 11

Parallel
Sequence
(Strategy)

Main
Attack
(Tactic)

Mid
Field

(Tactic)

Main
Defence
(Tactic)

Fig. 8: Strategy Tree.

Main
Attack

Sequence

Helper
Attacker
(Role)

weHaveBall

Sequence

Side
Attacker
(Role)

weHaveBall

Sequence

Attacker
(Role)

weHaveBall

Fig. 9: Tactic Tree.

Side
Attacker
(Role)

Sequence

prepareToRecieveSequence

goToBetterLocationisNotInBestLocation

Fig. 10: Role Tree.



12 RoboTeam Twente

The trees above represent the general flow of logic in the system. The strategy
tree has three tactics trees as children in a parallel sequence, meaning all three
execute concurrently. In Figure 9, there is a closer view of the main attack tree,
where three robots work together to score. It should be noted that it is assumed
the ‘Attacker’ has the ball, and therefore the other roles are aimed at supporting
that robot. In the close up for the side attacker there is logic to optimise the
position of the robot and to prepare receiving a pass from the other robots in
this tactic.

The reason for this scoping approach is to make the strategy development
process more efficient. Once a role is constructed it can be tested by itself and
then swapped in the right position with the certainty that it will work as initially
intended. Another benefit is that during a game with any event change the
strategy tree can swap out different tactics in some of its branches to adjust to
the current situation.

6.2 Helper Agents

Behaviour trees must be pre-programmed, giving rise to several disadvantages.
Each node in a tree is coded and as more effort-intensive adjustments are made,
the more error prone and less complete the trees become. The language of the
tree is hereby edited each time to suit the needs of the programmer, which is
not a good practice. This is why, keeping trees pure is of high priority. Pure, in
this context, means keeping the nodes that make up the trees generic for all the
situations. Meaning, by only moving and exchanging nodes, all needed behaviour
is described.

Therefore, Helper Agents exist alongside the trees where dynamic results can
be achieved without the loss of purity. The functions of these agents range from
tree assigning, giving optimal positions for specific nodes, to assigning danger
scores to opposing robots. Due to the desire to keep trees as pure as possible,
the input of the agents is in the form of an integer or vector pair. This will
prevent the loss of overview, because only certain parameters are altered and
the behaviour remains untouched. The three major helper agents are discussed
in this section.

Robot Dealer Behaviour trees assign roles to the robots in a dynamic environ-
ment, making it impossible to predict the location of a robot once the game has
started. Therefore, it is crucial that roles are assigned accordingly - attacking
potential of a robot near its own goal is not optimal, as it would have to move
to the opposite side of the field in order to receive a pass during an attack. Sim-
ilarly, if a robot located on the opponent’s side is tasked with defending against
an attacking robot with high scoring potential, it is not able to perform properly
and effectively. To deal with these situations, Robot Dealer is deployed at the
beginning of every game.

Tactic nodes of the behaviour trees can send a request to the dealer, asking
for a certain number of robots with specific attributes. As an example, the dealer



Extended Team Description Paper 2019 13

will be asked for three robots with high attacking potential to execute the Main
Attack Tactic. Heuristics to determine these robots are distance to the opponent
goal, distance to the ball, and whether the robot is involved in a different tactic
already. All robots on the field should be claimed by a tactic, however, fixed
number of robots per tactic may increase complexity. To resolve this, tactics
are configured to be flexible - a free robot will be claimed as low priority with a
generic role, allowing another tactic to overtake this robot if necessary. A generic
role is usually placing the robot in a good position depending on the current state
of the game.

The Coach The current system uses Blackboards for variable passing. Due to
the amount of variables present while playing a game, blackboards can quickly
become highly complicated. Additionally, all variables must be programmed in-
side their trees and inside skills that use those variables, needlessly increasing
code complexity.

A new concept is introduced to solve this complexity: the Coach. The Coach is
a single instance which is involved in a large part of the decision-making process
and returns often-needed locations during the game, such as the location of the
ball, goals and robots. In the case of passing, the passBall skill makes a request to
the coach, asking to which robot it should pass, on which the coach determines
the best option and returns that robot. Furthermore, the Coach notifies the
pass-receiving robot that the ball is coming. In every decision there are values
that change based on the state of the game, history of what has happened in
the game and what is desired to happen. Centralised logic, such as the Coach,
allows easier collaboration between robots.

Following example describes a defender tree with snippets from the Coach
and the behaviour tree that makes requests to the Coach. Assuming that the
opponent robot has the ball, the first Sequence will execute the Harass skill, as
shown in Figure 11. To determine which robot to harass, a robot ID is requested
from the Coach. The latter, as shown in Algorithm 2, through certain heuristics
determines the target robot ID and returns the value to the skill. This interaction
is also captured in Figure 12.

Main
Defender

Sequence

goToOptimalPositionweHaveBall

Sequence

HarassopponentHasBall

Fig. 11: Defender Role Tree.



14 RoboTeam Twente

Algorithm 2 Decide which target to harass
Input: The set of opponents N
Output: A robot ID target

1: for i← 0 to N .size do
2: if dangerScore(Ni > currentDangerScore) then
3: currentDangerScore = dangerScore(Ni)
4: target = Ni

5: end if
6: end for

Danger Finder During the game, opponent robots pose different levels of
threat. Therefore, a Danger Finder agent is deployed each game to evaluate
and keep track of all opponents. A danger score is calculated by evaluating each
robot based on pre-defined characteristics, with a range of multipliers for each
characteristic according to its severity level. Algorithm 3 shows the calculation
of the danger score. Multipliers are dynamically calibrated, since they change
depending on defined criteria, and are therefore shown with letters instead of
numbers.

Algorithm 3 Compute danger score
Input: Robot ID robot and world data ourGoal
Output: Danger Score k

1: k ← 0
2: k ← k + n× doesRobotHaveBall(robot)
3: k ← k +m× distance(robot, ourGoal)
4: k ← k + p× averageDanger(robot)

Is there a harass target? Go to position to harass

Ask coach for target

Yes

No Target given

Fig. 12: Connection between the Coach and Defender Role Tree.

Owing to this modular structure, specific skills such as shooting and intercept-
ing can be improved by applying machine learning, as mentioned in [16]. The
structure allows the skill to be wrapped with programmed branches, achieving
a valid experimental set-up.



Extended Team Description Paper 2019 15

6.3 ArUco vision

For RoboTeam Twente events outside of the RoboCup, the vision system condi-
tions are less reliable and affect recognition of colour-coded robot markers. The
software could therefore benefit from a system which is less reliant on colour
distinction. For realisation of this system, robot-markers are designed using only
black and white colour scheme (see Figure 13).

(a) Blue ID8 (b) Blue ID12 (c) Yellow ID4 (d) Yellow ID9

Fig. 13: Robot-markers and their corresponding ID per team.

The markers are derived from ArUco markers and therefore look like QR-codes.
ArUco markers use a square n×n binary data array with a black edge. To better
suit the needs of RoboTeam Twente, ArUco has been used as a basis, where black
and white colours are reversed. The main requirements for the data structure in
the system are as follows:

1. The marker detection should not take more than 10ms
2. A 3x3 data structure with:

(a) 5 data bits to support up to 16 robots per team
(b) A parity bit to detect read-errors
(c) One or two bits determining the direction the marker is facing

3. ‘Connected’ white marker bits, explained in Section 6.3
4. Human readability of the data in the marker

Process A custom plugin is developed as an extension on SSL-Vision to detect
the markers. The plugin can return the location, rotation and robot-ID of all
markers. The default ArUco library does not meet the requirement of detecting
a marker within 10ms, as it is not optimised for speed but for handling many
and complex situations. The markers will always be on a green field with caps at
relatively small angles to the camera, meaning a rather constant environment.
Therefore, ArUco code was specifically designed to work in this situation.

The algorithm first traces through the frame, skipping certain pixels to in-
crease speed. It detects pixels that are ‘whiter’ than a certain RGB-margin set
within the interface of SSL-vision. When encountering a white pixel, a breadth-
first search algorithm is used to find all neighbouring pixels, marking them as
white, avoiding further detection, and stored in an array. No pixels are skipped



16 RoboTeam Twente

in this process. From now on, these groups of pixels are referred to as ‘blocks’.
The previously mentioned ‘connected’ white marker bits are a requirement for
the breadth-first search algorithm to work properly.

There is a high probability that the algorithm finds blocks which are not
derived from markers and must therefore be removed. The four corners of the
blocks are marked to determine the ‘squareness’ of the marker by looking for
near-equal side lengths and near-90 degree angles. Incorrectly shaped blocks are
hereby filtered.

The corners of the blocks are used to divide the marker into a 5×5 grid,
whereafter it is confirmed that the outside of the grid is white. Once confirmed,
the rotation of the inside grid is determined and the data bits are extracted. A
final check determines the validity of the marker using the parity-bits and the
robot-ID and team are returned.

Finally, the center of the marker is determined by taking the intersection of
the opposing corners of the square and the rotation is determined by the angle
of the sides of the marker and increased by a factor of 90 degrees depending on
the extracted data of the direction-bits of the marker.

Application The proposed system meets the requirements and has better robot
marker detection than the SSL-vision system. Although the robots are detected
reliably, the system can be improved for various situations.

The system can be improved in various ways. When the camera is set at
an angle greater than 45 degrees relative to the markers, detection is prone to
errors. In the current implementation of the system, these markers will be filtered
out by the function that checks for the squareness of the marker. This can be
prevented by using an algorithm that takes perspective into account to detect
the corners of said markers. When a strip of bright light is shining on the field,
markers within that area are considered white, preventing robot detection. A
redesign of the algorithm would lower the error rate in this situation. However,
thorough testing is required.

This robot detection method can possibly be used in future RoboCups, using
numbers as markers instead of QR-codes as shown in Figure 14.

Fig. 14: Possible future robot-markers.



Extended Team Description Paper 2019 17

7 Conclusion

This paper described the improvements on the hardware and software of RoboTeam
Twente. The adaptations in the electrical and mechanical design, improvements
of the motion control and overall increase in stability, reliability and modularity
will hopefully lead to success in the RoboCup 2019.



18 REFERENCES

References

[1] RoboTeam Twente. “RoboTeam Twente 2017 Team Description Paper”.
In: (2017). url: https:
//roboteamtwente.nl/documents/RoboTeamTwente_SSL_2017.pdf.

[2] RoboTeam Twente. “RoboTeam Twente 2018 Team Description Paper”.
In: (2018). url: https:
//roboteamtwente.nl/documents/RoboTeamTwente_SSL_2018.pdf.

[3] ON Semiconductor. LB11696V Datasheet.
url: https://www.onsemi.com/pub/Collateral/LB11696V-D.PDF.

[4] Nexperia. PMCPB5530X datasheet. url: %5Curl%7Bhttps:
//assets.nexperia.com/documents/data-sheet/PMCPB5530X.pdf%7D.

[5] Neonode. zForce AIR Touch Sensor Specification.
url: https://support.neonode.com/docs/display/
AIRTSUsersGuide/Specifications+Overview.

[6] ER-Force. “ER-Force Team Description Paper for RoboCup 2014”.
In: (2014). url: https://www.robotics-erlangen.de/wp-
content/uploads/tdp2014.pdf.

[7] ER-Force. “ER-Force Extended Team Description Paper RoboCup 2016”.
In: (2016). url: https://www.robotics-erlangen.de/wp-
content/uploads/etdp2016.pdf.

[8] OP-AmP. “OP-AmP 2017 Team Discription Paper”. In: (2017).
url: https://www.robocup2017.org/file/symposium/soccer_sml_
size/Robocupssl2017-final9.pdf.

[9] F. Aurenhammer and H. Edelsbrunner. “An optimal algorithm for
constructing the weighted voronoi diagram in the plane”.
In: Pattern Recognition 17.2 (1984), pp. 251–257. issn: 0031-3203.
doi: https://doi.org/10.1016/0031-3203(84)90064-5. url: http:
//www.sciencedirect.com/science/article/pii/0031320384900645.

[10] D. T. Lee and B. J. Schachter.
“Two algorithms for constructing a Delaunay triangulation”.
In: International Journal of Computer & Information Sciences 9.3 (June
1980), pp. 219–242. issn: 1573-7640. doi: 10.1007/BF00977785.
url: https://doi.org/10.1007/BF00977785.

[11] Ahmed Eldawy. Voronoi Diagram and Delaunay Triangulation. 2015.
url: http://aseldawy.blogspot.com/2015/12/voronoi-diagram-
and-dealunay.html (visited on 12/04/2018).

[12] Frantĭsek Duchon̆ et al.
“Path Planning with Modified a Star Algorithm for a Mobile Robot”.
In: Procedia Engineering 96 (2014). Modelling of Mechanical and
Mechatronic Systems, pp. 59–69. issn: 1877-7058.
doi: https://doi.org/10.1016/j.proeng.2014.12.098. url: http://
www.sciencedirect.com/science/article/pii/S187770581403149X.

[13] Huijuan Wang, Yuan Yu, and Quanbo Yuan.
“Application of Dijkstra algorithm in robot path-planning”.
In: (July 2011), pp. 1067–1069. doi: 10.1109/MACE.2011.5987118.

https://roboteamtwente.nl/documents/RoboTeamTwente_SSL_2017.pdf
https://roboteamtwente.nl/documents/RoboTeamTwente_SSL_2017.pdf
https://roboteamtwente.nl/documents/RoboTeamTwente_SSL_2018.pdf
https://roboteamtwente.nl/documents/RoboTeamTwente_SSL_2018.pdf
https://www.onsemi.com/pub/Collateral/LB11696V-D.PDF
%5Curl%7Bhttps://assets.nexperia.com/documents/data-sheet/PMCPB5530X.pdf%7D
%5Curl%7Bhttps://assets.nexperia.com/documents/data-sheet/PMCPB5530X.pdf%7D
https://support.neonode.com/docs/display/AIRTSUsersGuide/Specifications+Overview
https://support.neonode.com/docs/display/AIRTSUsersGuide/Specifications+Overview
https://www.robotics-erlangen.de/wp-content/uploads/tdp2014.pdf
https://www.robotics-erlangen.de/wp-content/uploads/tdp2014.pdf
https://www.robotics-erlangen.de/wp-content/uploads/etdp2016.pdf
https://www.robotics-erlangen.de/wp-content/uploads/etdp2016.pdf
https://www.robocup2017.org/file/symposium/soccer_sml_size/Robocupssl2017-final9.pdf
https://www.robocup2017.org/file/symposium/soccer_sml_size/Robocupssl2017-final9.pdf
http://dx.doi.org/https://doi.org/10.1016/0031-3203(84)90064-5
http://www.sciencedirect.com/science/article/pii/0031320384900645
http://www.sciencedirect.com/science/article/pii/0031320384900645
http://dx.doi.org/10.1007/BF00977785
https://doi.org/10.1007/BF00977785
http://aseldawy.blogspot.com/2015/12/voronoi-diagram-and-dealunay.html
http://aseldawy.blogspot.com/2015/12/voronoi-diagram-and-dealunay.html
http://dx.doi.org/https://doi.org/10.1016/j.proeng.2014.12.098
http://www.sciencedirect.com/science/article/pii/S187770581403149X
http://www.sciencedirect.com/science/article/pii/S187770581403149X
http://dx.doi.org/10.1109/MACE.2011.5987118


REFERENCES 19

[14] Ji-wung Choi, Renwick Curry, and Gabriel Hugh Elkaim.
“Real-Time Obstacle-Avoiding Path Planning for Mobile Robots”.
In: (2010). doi: 10.2514/6.2010-8411.

[15] A. Marzinotto et al.
“Towards a unified behavior trees framework for robot control”.
In: (May 2014), pp. 5420–5427. issn: 1050-4729.
doi: 10.1109/ICRA.2014.6907656.

[16] Martin Riedmiller et al. “Reinforcement learning for robot soccer”.
In: Autonomous Robots 27.1 (2009), pp. 55–73.

http://dx.doi.org/10.2514/6.2010-8411
http://dx.doi.org/10.1109/ICRA.2014.6907656

	RoboTeam Twente  Extended Team Description Paper 2019

