
MRL Extended Team Description 2014

Amin Ganjali Poudeh, Hadi Beik Mohammadi, Adel Hosseinikia, Saeid
Esmaeelpourfard, and Aras Adhami-Mirhossein

Islamic Azad University of Qazvin, Electrical Engineering and Computer Science
Department, Mechatronics Research Lab, Qazvin, Iran

a.adhami@ece.ut.ac.ir

Abstract. MRL Small Size Soccer team, with more than five years of
experience, is planning to participate in 2014 world games. In this pa-
per, we present an overview of MRL small size team. Having attained the
third place in 2010, 2011 and 2013 competitions,this year we enhanced
the reliability and achieved higher accuracy. Now, finalizing our debug-
ging tools like 3D simulator, comprehensive user interface and decision
systems restructuring, aided us to evaluate the entire system software
from low level control to high level strategies. Finally, by overcoming
electronic and mechanical structure problems,we promoted the robots
ability in performing more complicated tasks.

1 Introduction

MRL team started working on small size robots from 2008. In 2013 Robocup, the
team was qualified to be in semi-final round and achieved the third place. In 2014
the team goals are, first: preparation for double-sized field games and, second:
Having more dynamic and intelligent behavior. This year, the main structure of
the robots is the same as 2013, see [1] for details.

Some requirements to reach this target are achieved by redesigning the elec-
trical and mechanical mechanisms. Moreover, simple learning approaches and
advanced control methods are employed in the way of more dynamic play. Eval-
uation by software tools, like online debugger and simulator which is detailed
more in [2], made the design procedure and verification faster.

This paper is organized as follows: First of all, the software architecture
which includes our approaches in high level strategies, navigation subsystem and
verification tools is described in section 2. The Electrical design including ARM
micro controller together with FPGA, and other accessories of robots onboard
brain, is explained in section 3. Description of new mechanical structure, which
modifies the capabilities of the robots with smooth and reliable motion, is the
subject of section 4.

2 Software

In this part the software main objects are presented. It is shown that how our
new architecture provides us a safe and flexible game. In this year MRL software



team has changed the AI structure and built up a new architecture. The new
game planner as the core unit for dynamic play and strategy manager layer are
introduced in this section. After these major changes, minor modifications on the
other parts like visualizing systems are presented. Following paragraph, sketch
an overview to the MRL software modules and their connections.

The software system is consisted of two modules, AI and Visualizer. The AI
module has three sub-modules being executed parallel with each other: Planner,
STP Software (see [5]) and Strategy Manager. The planner is responsible for
sending all the required information to each section. The Visualizer module has
to visualize each of these sub-modules and the corresponding inputs and outputs.
The visualizer also provides an interface for online debugging of the hardware.
Considering the vision subsystem as an independent module, the merger and
tracker system merges the vision data and tracks the objects and estimates the
world model by Kalman Filtering of the system delay. Figure 1 displays the re-
lations between different parts. In this diagram, an instance of a play with its
hierarchy to manage other required modules are depicted. The system simulator

Fig. 1. Block diagram of AI structure

is placed between inputs and outputs and simulates the entire environments be-
havior and features. It also gets the simulated data of SSL Vision as an input and
proceeds with the simulation. Last year we add a new feature to our simulator
that uses the kinematic modeling of robot motions. In the following subsections



we introduce each layer of the AI mechanism. Note that, the arrangement of the
introduced layers is to increase tractability.

2.1 Strategy management

In last year we introduce a new layer of MRL AI hierarchy, the Strategy Layer.
In the strategy layer, the AI system learns to select the best game strategy for
some specific time frames. Each strategy is a heuristic game playing for certain
number of attendees. “Field region”,“game status” and“minimum score to be
activate” are parameters pertaining to each strategy. For instance, Sweep and
Kick strategy with three attendees works the best in the middle of the field is
activated after score one, and requires“Indirect Free Kick” game status. If all the
four parameters are satisfied, the strategy becomes “applicable” at certain time
frame. We model each strategy as a Finite State Machine (FSM). Consecutive
states of strategy FSM indicate the chain of actions required to be performed
in that strategy. The transition conditions between states reflect the prerequi-
site conditions for the actions. The FSM has got an initial state with which
the “applicability” is verified. It also has got Trap and Finish states indicating
“failed” and “successful” ending of the strategy, respectively. A dynamic score
is designed for each strategy. After completion of each strategy (either failed or
successful), the strategy score is updated also strategy score will updated with
result of game analysis from game planner and opponent defense analyzer during
the game.

Strategy manager operates as the highest component of the Strategy Layer.
This component is responsible for selecting the best strategy at each time frame.
The strategy manager has got three different selection policies:

1. Random Selection: The manager randomly selects one of the applicable
strategies.

2. Higher Score with a Probability of Random Selection: The manager
tends to select the strategy with the highest score as of now, trying to apply
the best strategy which has proved to have the best performance. Also,
for the sake of giving the chance to some lower scored strategies to make
progress, the manager randomly selects a strategy with probability of P .

3. Weighted Random Selection: The manager randomly selects one of the
strategies, each of which has a weight corresponding to the probability to be
selected.

The Strategy Manager selects one of the applicable strategies in one of the three
mentioned ways and the attendee robots are assigned roles for performing the
strategy. When the strategy traps or successfully ends, robots are reassigned
roles for the normal play. The strategy layer helps us to avoid a share data or
blackboard for agents. Therefore we can design a cooperative game of agents,
dynamically.



PassShoot strategy Simple pass and shoot is one of the most common strate-
gies in SSL because of its high execution speed. On the other hand due to the
improvement of SSL teams in marking and defense tactics, it is very hard to
achieve success with simple pass and shoot strategy with two attended robots.
The proposed pass and shoot strategy has been implemented with three robots, a
passer and two positioners, figure 2. Moreover, to increase the chance of success,
the strategy has been implemented in a dynamic way as much as possible. In this
strategy one of the positioners is selected to get the pass. The selection is made
at the last moment of the passing state of the strategy. It depends on situations
(position, clearance and ...) of the two positioners. Because of this type of selec-
tion, it is not clear witch robots shoot the ball. In order to make the strategy
dynamic, we use a synchronizer module. This module synchronizes passer with
the positioners in the way that pass point has been reached by the ball and the
selected positioner simultaneously. The synchronization method considers the
conflicts and obstacles. This module calculates the wasted time and then make
up this time by changing operations time line. Thanks to the synchronizer, it is
not necessary for the shooter robot to be in the pass point from the beginning.
This increases the chance of success. The pass point is determined by the game
planner module using a grid based algorithm according to some parameters like
goal view angle, opponents density and in different parts of field. Type of pass
(direct or chip) depends on the obstacles in the way of pass point. It can change
until kicking the ball.

Synchronization algorithm This module is used for synchronizing between
passer and shooter robot while unexpected causes such as obstacles in the way
of shooter robot does not make any disturbance in the pass-shoot timeline. To
this end parameter tm is defined as the time it takes the shooter robot to reach
the pass target in an obstacle free path and tp is defined as the time it takes the
ball to reach the pass target from beginning of the pass procedure. tp and tm
are determined as below:

tm = km ·motionT ime
(
ps(0), pt

)
tp = kp ·

(
passT ime (passSpeed, pt) + motionT ime

(
pp(0), pb

))
+ two

where
two: An offset waiting time
ps(i) Shooter robot position at frame i of the procedure
pp(i) Passer robot position at frame i from beginning of the procedure
pb: Ball first position
pt: Pass target position
km and kp: Constants
motionT ime is an experimental/heuristic function that estimates the time it
takes a robot to reach a target from an initial point.
passT ime function calculates the time it takes a passed ball to reach a target
with an initial pass speed considering both rolling and slipping parts of the ball
motion.



Fig. 2. Pass shoot strategy: (a) Initial state: positioning and pass point (aqua circle)
selection (b) Pass state, (c) Final state.

Considering these definitions the pseudo code of synchronization function is
as below:

isInPassState = goPass(passTarget, tw);
if isInPassState then

counter + +;
if tp > tm then

if counter ≥ tp − tm then
goToPoint(shooterRoboto, passTarget);
determineWaitingT ime = true;

else
determineWaitingT ime = false;
stop(shooterRobot);

end

else
gotoPoint(shooterRobot, passTarget);
determineWaitingT ime = true;
if counter < tm − tp then

two + +;
end

end

else
counter = 0;
stop(shooterRobot);

end
tw = two;
if determineWaitingT ime then

twe = calculateExtendedWaitingT ime();
tw = tw + twe;

end



goPass function generates proper commands for robot to go behind the ball
and throw a pass to an specific passTarget after waiting for tw frames. It returns
a Boolean flag which indicates if there is any obstacle between passer robot and
the ball.

calculateExtendedWaitingT ime function determines extended waiting time
depends on deviation of shooter robot from the straight (obstacle free) path. For
this purpose vr is defined as the reference coordinate as below:

vr = pt − ps (0)

We use a near-time optimal trajectory planner implemented as the function of

Fig. 3. Pass-shoot synchronization

〈V ∗ideal, X∗〉 = motion1DinRefrence
(
Ps(0), pt, r

)
to compute the sequence of

velocity commands V ∗ideal and the position X∗ required to navigate from initial
location ps(0) to pt along vr with final velocity of zero, see Figure 3. To compare
the motion of the shooter robot with an ideal motion along vr, dx and dr are
determined as belows:

d = Ps(n)− ps(n− 1)
R = Ps (n)− ps (0)

dr = |R| · Cos
(
R̂,vr

)
dx = |d| · Cos

(
d̂,vr

)
where
d: Displacement vector of shooter robot in the last frame
R: Displacement vector of shooter robot from the initial point
dx: Projection of d on vr

dr: Projection of R on vr

Finally, the extended waiting time twe is calculated from the following equa-
tions.

vd = V ∗ideal (dr)

twe =
∫ t0
tn

1− dx

vd



where:
vd: Desired velocity at distance of dr from ps(0) along vr

twe: Extended waiting time of the passer

2.2 Defense Analyzer

One criterion (maybe the most important one ) that changes a specific strategy
score is its success probability against the opponent defense tactic. We design
an online defense analyzer to find suitable attacking strategies based on the
opponent defense weak points. Our analyzer runs some movements pattern in
a constant period of time during a game in “Free Kick” or “Stop” states of
the game. These patterns are programmable and dynamic to reveal important
information aboout the defending tactics.

As an example, to find the maximum distance that opponent markers pursuit
our attackers, we send two robots to the opponent field. After ensuring from
marking these robots, we turn back the robots and measure maximum distance
of pursuit.

Some important information, gathered from these patterns, are as belows:

– Which Robots are most important from opponent’s point of view in different
condition of our attack.

– Type of opponent “Stop-cover”, e.g. moves according to the angle of the
passer robot or in static form supports the goal.

– Behavior of the opponent defense in contrast with different number of at-
tacker robots.

– Method of marking attackers, this information includes the marker distance
from the attacker and maximum distance of pursuit in the field.

– Whether the opponent markers and defenders are aggressive or not.
– How the goal is covered by the goal keeper and the defenders. If the goal is

closed by the goal keeper and two defenders or one defender. In the case of
using two defenders, the goal keeper is always in the middle of the defenders
or beside them.

– Whether opponents use path planning to move on defense line or not.
– If a robot switches between different defending roles (e.g. marker and de-

fender roles).

This information send to the strategy manager. The strategy manager, according
to this information and its knowledge about our attack strategies type, changes
scores of the related attack strategies.

2.3 Navigation system

We are using Rapidly Random Tree (RRT) as a part of our navigation subsystem.
A simple RRT path planner tries to generate a tree from an initial state to a goal
state using random points in a way that the tree does not encounter obstacles.
In the procedure of expanding the tree all the random points that may are in the



region of obstacles will be eliminated. Moreover, if there is a reachable path from
each random point to goal, the desired tree will be completed. After reaching
the goal, usually the generated tree is too rugged for tracking. Before starting to
move on path, the generated path must be made smoother. For this purpose we
benefit from a heuristic algorithm. In figure 4, the RRT path and smoothed one is
depicted. The experience at Robocup 2012, shows many collisions in each game.

Fig. 4. Sample of the generated path before and after smoothing

This is mainly because of the robots high speed, acceleration and robots high
density in the small regions of play. Collisions may cause damages for robots
and especially wheels electrical motors. Also, collisions reduce the prediction
accuracy that causes performance reduction of some complicated and multi-
states strategies. After the path has been generated well to avoid collisions,
almost our case, the next step is moving on the generated path. Last year we
cared more about the motion planner. Finding a heuristic algorithm that uses
the maximum robot ability of motion while following the path was the aim, for
more details on the algorithm see [1].

This year, our main focus is on achieving the method to perform a fast and
accurate point regulation of robot. In small size robot soccer the main concern
is to make the robot to reach at the target point in the minimum possible time.
Like the most small size teams, we employ the practical bang-bang control in
the open-loop manner to have the fastest motion between two points. Although
this motion is fast enough, it is not precise enough at the end point. Usually,
a closed-loop method like PID (or PD) controller are used to achieve precise
regulation from a predefined distance from the target point. This year instead
of the PID controller, a model based predictive control is employed as the end
phase control. In recent years, the prediction concept in mobile robots is highly
important because the robots are used more and more in dynamic environments
(e.g. robotic soccer, manufacturing plants, and agriculture), [3].



Model predictive control is utilized a reference trajectory which is defined by
the best trajectory from the current state (position and velocity) to the desired
state. Then, based on the reference, two velocity are generated in X and Y
coordinates. This strategy can be shortly explained in the following sub-section.

2.4 Model predictive control

In this section, a linear MPC (LMPC) scheme applied to the problem of tra-
jectory tracking is introduced. MPC can compensate the effect of dead-time by
predicting the future output of system while it can be used to overcome some
other deficiency of system model. To design the MPC controller for trajectory
tracking, the linearized system model will be written in a state space form as:

X(k + 1) = AX(k) + BU(k − k0) (1)

where A ∈ R2×2 and B ∈ R2×2. By creating a state space model (1) of a system,
it is possible to utilize MPC technique. The proposed approach is to find the
control-variable values that minimize the quadratic objective function by solving
a quadratic program (QP). The quadratic objective function associated with
MPC at each sampling time k can be stated as below:

J(k) =

N∑
i=1

z′k+i|kQzk+i|k + v′k+i−1|kRvk+i−1|k (2)

Here zk+i|k = x̂k+j|k−xrk+j
represents the error with respect to the reference

robot and vk+i|k = ûk+j−k0|k−urk+j−k0
is its associated error control input; N is

the prediction horizon; Q and R are symmetric weighting matrices with proper
dimensions.

By defining the following matrix, the future state of system can be formulated
in (3).

Z(k + 1) = G(k)Z(k|k) + S(k)V (k) (3)

Where

S(k) =


Bd(k) 0 ··· 0

Ad(k)Bd(k) Bd(k) ··· 0

...
. . .

. . . 0
Ad(k)

N−1Bd(k) Ad(k)
N−2Bd(k) ··· Bd(k)

 , G(k) = [I, A(k), · · · , AN (k)]T

(4)
Thus, defining Q̄ = diag(Q, · · · , Q) and R̄ = diag(R, · · · , R), the cost function
of the QP problem can be rewritten as fallows:

J(k) =

N∑
i=1

z′k+i|kQzk+i|k + v′k+i−1|kRvk+i−1|k

= XT Q̄X + V T R̄V

= (Gz(k|k) + SV )T Q̄(Gz(k|k) + SV ) + V T R̄V (5)



After some algebraic manipulations, the cost function (2) is rewritten in a stan-
dard quadratic form (6):

J(k) =
1

2
ŪT (k)HŪ(k) + FT Ū(k) + d (6)

with 
H = 2

(
(S(k)

T
Q̄S(k)) + R̄

)
F = 2S(k)

T
Q̄G(k)zk|k

d = zTk|kS(k)
T
Q̄S(k)zk|k

(7)

where H ∈ R2.N×2.N and F ∈ R2.N . Since all constants, which do not consist
the variable ū, do not affect the optimization problem,d is independent of v and
the QP problem can be represented:

J ′(k) =
1

2
ŪT (k)HŪ(k) + FT Ū(k) (8)

After yielding (8), which is a standard expression used in QP problems, the
optimization problem to be solved at each sampling instant is represented as
(9):

v∗(k) = argmin
v

[J ′(k)] (9)

3 Electronics

MRL robot electronic consists of an Altera Cyclone FPGA linked to an ARM
core the same as previous years. The major change during last year in this
section is implementation of parallel motor controllers in FPGA, since calculation
of PID controllers in software requires a lot of CPU time. Moreover, moving
controllers to FPGA, the ARM processor can be dedicated to other tasks with
less interrupts.

3.1 Main Board

Main board of the robot, which mainly drives wheels and dribbler motors, is
illustrated in Figure 5. The board is the same as MRL 2013, [1].

Principle of bootstrap gate driver Signals created from FPGA should turn
on the power MOSFETs, but the voltage level of the FPGA pins is not adequate.
As a result, MOSFET driver should be used to amplify these signals.

The previous MOSFET driver has voltage supply limitations. Also these
drivers can be implemented in the case that the maximum input voltage level
is less than the gate-to-source breakdown voltage. While the input voltage level
prohibits the use of these drivers, principle of bootstrap gate driver can be taken
into consideration. Also previous signals were divided into two parts, logic and
power. To transfer the signals between these parts, optocouplers are used. Due to



Fig. 5. MRL mainboard

photo-transistor structure of this device,the temperature which rises up in other
parts, affects the output voltage level of this device. On the other hand the total
delay between transitions is high. Therefore it is essential to replace this part
of circuit. Direct driver with ground considering, improves the reliability and
increases the switching frequency.

Improvement of the Turn-off speed The turn-off speed of MOSFETs only
depends on the gate driver circuit. Regarding the mentioned fact,a lower re-
sistance should be firstly utilized in output of MOSFET drivers,since a higher
current turn-off circuit can discharge the Capacitance of gate-source (Cgs) faster
and provide shorter switching time and consequently lower switching losses. How-
ever,using this circuit increases the ringing of the waveform due to the didt of the
MOSFET. The simplest technique to achieve higher current in turn-off switching
is applying an anti-parallel diode as shown in Figure 6.

The above circuit limits the current in turn-on MOSFETs by R-gate and
the diode acts like a shunt resistor in turn-off switching. As a result, the turn-
off delay time is decreased but still current must flow through the MOSFET
driver impedance. The magnitude of the current limited by driver impedance
is still lower than currents limited by R-gate. On the other hand, this circuit
does not occupy much space to be implemented on printed circuit board (PCB).



circuit.png

Fig. 6. Turn-off speed improvement circuit

As shown in Figure 7, the turn-off time when the anti-parallel diode is used is
120 Nanosecond and without the diode it is more than 1microsecond. But as
mentioned before it can be seen that the ringing in waveform when the diode
exists is more than when it does not exist.

transient.png

Fig. 7. Turn-off transient voltage: with diode (left), without diode (right)

Calculate CBST and CDRV values The most important components in de-
sign of the bootstrap drivers is bootstrap capacitor, CBST . In every cycle of
switching, bootstrap capacitor must provide the total gate charge Qg that is
necessary to turn on the MOSFET in normal operation. The value of the boot-
strap capacitor should be selected in a way that provides the required energy
turn on and off MOSFET continuously and rapidly. Also it relatively needs short
time to charge Qg against the switching frequency. Therefore the challenge of this
part is to choose the best value of capacitor which is attributed to various factors



such as Tonmax, Qg and some more. Also the voltage level of the capacitor must
never be less than the under voltage lockout threshold of the driver. Another
capacitor which is as important as the bootstrap capacitor is VUV LO. Since the
charge and discharge of the CBST happens in a short time interval, it involves
high peak current and reduces potential in driver supply voltage. Therefore it
is necessary to utilize a capacitor in the supply of the driver and its magnitude
should be larger than the CBST . Also minimizing the whole loop area in PCB
is important, see Figure 8.

Fig. 8. High side bootstrap gate driver circuit

MOSFET selection Considering the fact that the most of the power loss is
related to theRDSon,to reduce power loss we should first choose a RDSon but as
a result Qg of the MOSFET is increased. Qg factor defines the time transition in
switching and reduces the losses in the gate drive circuit owing to the fact that
less energy is required to turn on or off. In optimal design the trade-off between
these two factors is important. Since the motor driver frequency is low, RDSon is
more important than Qgin in our design. According to the following table which
is owned by NXPTM cooperation the PSMN0R9 high performance N-channel
MOSFET is selected. Figure 9 lists different MOSFET specifications.

3.2 Low level Controller

The electronic part consists of FPGA and ARM7 microcontroller. signal process-
ing is managed in FPGA and other tasks like wireless communication, algebraic
operation and control task are done in ARM7 core. Among these tasks, the
control loop is the most important one.

This architecture faces some problems as:



Fig. 9. List of MOSFET specifications.

– Time limitation in perform of control loop due to the high computational
cost.

– Suppressing the control loop interrupts by some interrupt event with higher
priority.

According to the drawbacks mentioned above, redesigning of this structure seems
essential. Implementation of PID control loop in FPGA, eliminates these con-
straints with lowest software and hardware cost. There are two ways to solve the
problems:

– Utilizing a soft core like Nios embedded-processor for Altera FPGA.

– Self design architecture and implementation for PID in FPGA.

The first way causes over hardware designing. It is not an optimal way, since the
ARM architecture is more powerful than other soft cores. Thus, to design and
implement PID control loop in FPGA, we select the second way based on [7].

3.3 IR sensor

To recognize the ball position in dribbler we used IR sender sensors with specific
frequency which is sync with two special frequency withdifferent measurments.
To this end, the transmitter sensor is driven by a square wave with specific
frequency. Receiver sensor output voltage is filtered by a narrow band-pass filter,
Figure 10. To protect sensors and have better ball positioning, the location and
structure of sensors were reshaped.

3.4 Kikers optimization

This year we optimize robots direct and chip kick systems again to overcome
main drawbacks of the previous kicking systems. Direct kick designed last year
faced two problems:



Fig. 10. Sensor signals: Receiver(left),Transmitter(Right)

– Temperature problem: Because of the heat loss in the solenoid coil, the kicking
systems temperature goes up about 19◦c after each kick. This causes differ-
ent ball speeds in the future shoots/passes. More important, heat exchange
through the robot may decrease the performance of the wheel motors.

– Conservative design: Because of the probable difference between theoretical
and experimental results, a conservative optimization was done last year.
When the selected set-up was implemented, it showed similar kick speed to
the theoretical results.

Considering new constraint on the increasing temperature in each kick, we
optimize the direct solenoid specification to reach more than 8 m/s kick speed
with minimum weight. Simulations are done by Matlab and FEMM softwares.

For the chip kick system, we decide to replace the flat solenoid with a cylin-
drical one which is a more efficient structure. Lack of an appropriate simulator
considering flat solenoids with moving plunger, is the second reason encourages
us to this replacement. The new chip kick system (solenoid, plunger and capaci-
tors) is 100 gr lighter than the old one. Specifications of the optimized solenoids
are listed in Table 1.

Table 1. Specifications of the optimized kicking systems

Type Solenoid Plunger Number Wire Coil Increasing Speed or

length diameter of turns diameter resistance temperature distance

Direct 33mm 8mm 5 0.6mm 1.7Ω 10◦c 8.4m/s

Chip 29mm 11mm 7 0.6mm 1.7Ω 12◦c 4m



4 Mechanical Design and construction

Typically, the main portions of mechanical structure of a small size robot, include
4 wheels, two kickers, a dribbler and the motion transformer system, Figure 11.
Regarding the league rules, diameter of the robot is 179mm and the height is
140mm. The spin back system conceals 20% of the ball diameter in the maximum
situation.

Due to some drawbacks in the previous proposed design, we have decided
to improve both the mechanical design and the construction materials. Main
changes in the mechanical structure of the robot are described in the following
paragraphs. The other parts are the same as the 2012 robot described in [2].

Fig. 11. Robot 2014 mechanical structure

4.1 Kicking systems

We use two kinds of kicking systems, direct kick and chip kick. Each kick system
consist two parts, solenoid and plunger. The custom made cylindrical solenoid
is used for direct kick similar to last year which has ability to kick the ball up
to 9ms. This year as a chip kicking system, because of performance problem we
decided to reshape the solenoid from rectangular to cylindrical. Because of the



electromagnetic effect in the cylindrical plunger two separate parts are used, one
part is made from pure iron (ST37) and another one is made from Aluminum
Alloy (7075). The chip kick has a 45 degree hinged wedge front of the robot
which is capable of kicking the ball up to 6m before it hits the ground.

4.2 Dribbling System

Dribbling system is a mechanism to improve the capability of ball handling.
As it is shown in Figure 12, dribbler is a steel shaft covered with a rubber
and connected to high speed brushless motor shaft, Maxon EC16 Brushless.
We examined several materials for dribbler bar, like polyurethane, Silicon and
carbon silicon tube.

Carbon Silicon is selected for its higher capability in ball handling. The spin
back motor was in the front of the robot and it was exposed to any strike
whether due to ball hit or robots collisions. To solve this problem, we took the
spin back motors position a little back and designed a shield for spin back motor.
To improve the capability of spin back for ball control we made a construct in
which the amount damping is controlled.

Due to the changes and increased engine power, we had to change the gear
ratio. Also we strengthened the bearing classification. Placing a cover on the
sensors connections we saved them from any unwanted damage.

Fig. 12. New dribbling system of the MRL robot



References

1. Ganjali Poudeh, A., Asadi Dastjerdi, S., Esmaeelpourfard, S., Beik Mohammadi,
H., Adhami-Mirhossein, A.: MRL Extended Team Description 2013. Proceedings of
the 16th International RoboCup Symposium, Eindhoven, Netherlands, (2013)

2. Adhami-Mirhosseini, A., Bakhshande Babersad, O., Jamaati, H., Asadi, S., Ganjali,
A.: MRL Extended Team Description 2012. Proceedings of the 15th International
RoboCup Symposium, Mexico city, Mexico, (2012)

3. Zarghami, M., Fakharian, A., Ganjali-Poudeh, A., Adhami-Mirhosseini, A.,:Fast and
Precise Positioning of Wheeled Omni-directional Robot With Input Delay Using
Model-based Predictive Control. Proceedings of the 33th Chinese Control Confer-
ence (CCC), Nanjing, china, (2104)

4. Bakhshandeh O., Sharbafi, M.A.: Modeling and Simulating of Omni Directional Soc-
cer Robots. IEEE 3rd International Conf. on Computer Modeling and Simulation,
Mumbai, India, (2011)

5. Browning, B., Bruce, J.; Bowling, M., Veloso, M.M.: STP: Skills, Tactics and Plays
for Multi-Robot Control in Adversarial Environments. Robotics Institute, (2004)

6. Balogh, L.: Design and application guide for high speed MOSFET gate drive circuits.
Texas Instruments/Unitrode Corporation, Power Supply Design Seminar, SEM,
(2001).

7. Wei, Z., Kim, B.H., Larson, A.C., Voyles, R.A.: FPGA implementation of closed-
loop control system for small-scale robot. Proceedings 12th International Conference
on Advanced Robotics, pp. 70–77. IEEE Press, (2005).


