
PARSIAN 2019
Extended Team Description Paper

Kian Behzad, Elham Daneshmand, Nadia Moradi, Mohammad Reza Kolani,
Mahdi Hajimohammadi Onidin, Yasamin Alizadeh Gharib, Atiyeh Pirmoradi,

Mohammad Mahdi Rahimi, Mohammad Mahdi Shirazi, and Mohammad Azam
Khosravi

Electrical Engineering Department
Amirkabir Univ. Of Technology (Tehran Polytechnic)

424 Hafez Ave. Tehran, Iran
{kian.behzad,elham.daneshmand,nadiamoradi,mr kolani,mahdi.hmohammadi,

alizadeh yasi,,pirmoradi atiyeh,mmrahimi,mhmmdshirazi,m.a.khosravi}@aut.ac.ir
http://www.parsianrobotics.aut.ac.ir

Abstract. This paper illustrates detailed mechanical, electronics, con-
trol, and software improvements made by Parsian Small Size Soccer team
since last year. The notable mechanical change is improving the dribbler
system to receive and control the ball more proficiently. Likewise, some
improvements have been made in electronic to cooperate more efficiently
with the software system. We used computational geometry algorithm
to improve the path planning. Moreover, providing the inverse-model of
the robots’ kinematics was profitable to correct the robot motion. New
developments in the log analyzer have also been provided. Lastly, an
attempt to learn the opponent defense strategies have been explained.

Keywords: computer cluster, motion control, machine learning, oppo-
nent modelling

http://www.parsianrobotics.aut.ac.ir


1 Introduction

Parsian, founded in 2005 by the Electrical Engineering Department of Amirk-
abir University of Technology, aims to design small size soccer robots compatible
with International RoboCup competition rules. This team has been qualified for
thirteen consequent years to participate in RoboCup Small Size League. The
most significant achievements of Parsian team are first place in RoboCup2012
Passing and Shooting technical challenge, first place in RoboCup2013 Naviga-
tion technical challenge, and fourth place in RoboCup2012 and 2017. Section 2.1
represents some mechanical changes in our robots. Then in section 2.2 electrical
design features have been explained. In section 3 we discussed improvements in
path planning and motion control. At last in section 4 new software improve-
ments have been introduced.

2 Hardware

2.1 Mechanic

Changing the Robots Weight Distribution. This year, the robots weight
distribution changed completely. The Parsian robots did not have a symmetri-
cal center of mass because the dribbler system is in the front side of the robot.
This results in losing the balance of the robot in a sudden stop. To solve this
problem, battery position changed from the center of the robot to the rear
(Fig. 1 and 2). These changes transfer the center of mass of the robot from
(X = 0.297, Y = 55.589, Z = 36.803) to (X=0.297, Y=49.26, Z=19.217); the
center of mass has become 6.329mm closer to the bottom of the robot, and
17.586mm closer to the robot’s symmetrical axis in the Z direction. A better
performance was achieved since the robot’s stability enhanced.



Fig. 1. The Previous battery position(the black cube represents the battery)

Fig. 2. The new battery position(the black cube represents the battery)

Improved Ball Control Capabilities. The dribbler and kicking system had
a minor problem; when the ball was located in different positions in the drib-
bler, the ball speed and direction varied. Therefore, the kicking action was not



predictable. To solve this problem, the following changes have been applied:

– Curved Dribbling Bar: In order to bring the ball to the center of the
dribbling system, The bar was tested with following specifications:

• different curves of radius 350mm, 300mm, and 250mm
• covers with a thickness of 2mm and 3mm

Finally, the curve with a radius of 300mm (Fig. 3) and a cover with 3mm had
the best performance based on the observations and experiments. Although
the ball could not be placed exactly in the center of the dribbler system
for the best result in control, the ball control was improved in the lateral
motion.

Fig. 3. curve dribbling bar

– Curved Kicker Head: When the ball is at the corners of the dribbler so
as to shoot the ball in a straight line, a new curved kicker of the radius
500mm, 400mm, and 300mm tested to lead the ball to the center-line of the
curved kicker. The curve kicker with 400mm (Fig. 4) radius gave us the best
performance based on observations. In a radius of 500mm, the effect of the



curve is not considerable. On the other hand, the radius of 300mm causes a
large deviation of the ball. We figured out that the 400mm radius curve is
the most suitable one. This caused the ball to move in a straight line when
the ball is in the corners of the dribbler.

Fig. 4. curve kicker bar

– Side Appendages for Dribbling System: In order to keep the ball in
the dribbler in lateral movements, we designed the side appendages (Fig. 5).
By applying force to the ball in lateral movements, these appendages retain
the ball inside the dribbler and prevent it from separating from the dribbler.

Receive Ball. One of the main challenges in the game is to receive the ball
properly (with quick and accurate reaction). The damp system requires spring
and damper to perfectly perform. To improve the efficiency of the damp system,
another rotational axis was added to the dribbler system. Therefore, a new piece
called ”Cradle” (Fig. 6) was created that causes the circular movement of the
damping system around the cradle axis(Fig 7 and 8).



Fig. 5. The dribbler with side appendages

Fig. 6. The dribbler system with cradle



Fig. 7. The old dribbler with one rotational axis

Fig. 8. The new dribbler with two rotational axis



O-rings. Compared to the previous plastic O-rings, silicon O-rings increased
the coefficient of friction between the wheels and the ground(Fig. 9 and 10); it
results in a smoother movement of the robot.

Fig. 9. The old wheel Fig. 10. The new wheel

Solenoid. According to the equation 1, ball velocity depends on the number of
rounds of wire wrapped in kick coil due to the wire diameter and wire resistance
and it has an optimum value [1].

v(T ) =
µFcnAVf

4Rsolenoidmp
T (1)

Results of using 0.8 mm diameter wire and applying rounds of wire wrapped
from 50 to 400 and 100, 150, 200 voltages were shown in Fig. 11, 12 and 13. In
which the horizontal axis, SVball, indicates speed of ball after kicking, and the
vertical axis, N, states the number of coil wire turn.

The jumps in the diagram are due to the change in the coil diameter of the
time to reach the last and first winding path.



Fig. 11. 100V

Fig. 12. 150V



Fig. 13. 200V

Use Spring for the Kick Plunger. To have similar properties in all robots,
similar springs are used to have the same stiffness factor for all kick plungers.
(Fig. 14).

Fig. 14. Plunger with Spring



2.2 Electronic

Slip and Pushing Detection. Using the vision via Kalman, we capture the
position, velocity, direction, and rotational velocity. Rotational velocity, linear
velocities, and yaw angle are kinematic parameters provided through internal
sensors. By comparing these two series of data, irregular motions such as slipping
and pushing robot could be detected.

IMU Sensor Fusion. By using the rotational velocity from the gyro, the tilt
angle from the accelerometer and compass of the magnetometer, and converting
this information into the pitch, roll, and yaw angles, rollover of the robot could
be detected. It shall be noted that the yaw angle calculated here is more accurate
than the vision.

Active Controller Update. The parameters (PID coefficients) to control mo-
tor velocity, motor current, roll, pitch, and yaw angles can be updated with
two-way communication. They are calculated and reported in real-time by AI
software using two sets of data, vision and sensors output.

Debug Engine. This year Parsian has developed a debug engine which is used
to debug the internal variables of the robot. The debug procedure starts from
the server request which sends the name of the internal variable. Afterward, the
robots send the value of the requested variable to the server. (Fig. 15)

Fig. 15. reported variables

Future Design. The following considerations are planned to be taken into ac-
count for future:

1. Replacing Spartan 3 with Spartan 6.



2. PIC shall be substituted with Xmega since it is more frequently used in
industrial application, more accuracy in ADC and it has less noise.

3. To have a single motor power switch, for each motor a MOSFET is used.
Therefore, if a motor malfunctions, only that one will be disconnected and
the rest of the motors continue working

3 Control

Computational Geometry Algorithm. For path planning, ERRT algorithm
with a few changes has been used for several years in Parsian software [2]. The
time complexity of this algorithm has grown exponentially with the increasing
length of the path. Therefore, the ERRT algorithm was not performing suffi-
ciently and consequently, a computational geometry algorithm was used. This
new approach is called GPlanner which could be run in real time. GPlanner uses
Tangent Visibility graph [3]. The new path planning algorithm brings about the
following improvements:

1. GPlanner gives the shortest path.
2. The path is robust and each cycle does not change much.
3. It provides an easier way to use multi-agent systems.
4. GPlanner performed faster than ERRT on average.

Assuming the field as a rectangle polygon and each robot as a square, the
center of which and robots are concentric, a polygon with convex holes repre-
senting the robots would be formed. Rohnert [4] has proposed an O(n+h2 log h)
time algorithm for computing the Tangent Visibility graph of P, where P con-
tains h convex holes.
GPlanner computes the shortest path between two points inside a polygon P
with holes of total n vertices can be computed in O(n log n + E) time with Di-
jkstra algorithm, where E is the number of edges in the Visibility graph of P. In
each cycle, we assume a piece of the robot path as a rectangle [5]. It is an ob-
stacle for the rest of robots and movable obstacles should correspond to convex
polygons.

Learning-based Kinematics Correction. It was observed during the tests
that robots tend to deviate from their trajectory when they are commanded
to move only in one direction. Efforts have been put to correct such errors by
learning methods. In this application, a neural network is utilized in an inverse-
model concept in order to estimate the relation between desired velocity and the
actual velocity of robots.
The proposed network with ”Adam” optimization algorithm to minimize the
error of learning was applied. The block diagram of this workflow is shown in
Fig. 16. Optimization is performed to minimize the absolute of difference between



actual and observed velocities which is our cost function. This network has been
tested several times with different structures of layers; though a fully-connected
two-layer-network fitted best to the data using 100 neurons in each layer and
ReLU as activation function for each neuron. Three-layer-network results in the
over fitting of the data which affects the training procedure since the error for
learning new data becomes larger.

Fig. 16. diagram of inverse-model learning

Since forward, normal and angular velocities are dependent to each other (for
example, by telling the robot to move only in forward direction, it may slightly
move in the normal direction, too), the input and output of the network are the
desired robot velocities and actual velocities, respectively. Therefore the inverse-
model of the robots’ kinematics was provided. In order to use the network after
training, a set of desired velocities is fed to network and The output of network
(the velocities needed to be published for the robot to move according to the
desired velocities), is calculated. This output is used continuously to correct the
motion of robots(Fig. 17).



Fig. 17. schematic representation of a two-layer fully-connected Neural Network

4 Software

According to Parsian TDP in 2018 [5], Parsian’s code was moved to the Robot
Operating System (ROS) framework. The experience from last year shows that
using ROS has great advantages. Although running the nodes on one PC causes
the shared memory protocol supersedes TCP [5] which was a great privilege
compared to computer clusters. On the other hand, according to the new Rules
in division A such as changing the field size and number of robots, running the
code on one single system is hardly possible.

4.1 Computer Cluster

ROS is a distributed computing environment. A running ROS system can com-
prise dozens, even hundreds of nodes, spread across multiple machines [6]. Par-
sian stack is also designed with distributed computing in mind. Well-written
nodes make no assumptions about where in the network it runs, allowing com-
putation to be relocated at run-time to match the available resources [7]. Fig.
18 shows a running code on two machines with one agent on the field.



Fig. 18. Topics graph for one agent with AI in multiple machines



4.2 Software Architecture

Since last year, two minor changes have been made to the architecture of the Par-
sian Code. Both of these changes were aimed to make the testing and execution
process quite easier.

Parsian−tools Package. The Parsian−tools package is the primary tool de-
signed to allow the code to be implemented more quickly. This package provides
several scripts in order to manipulate the software in different situations, also
finding different tools in order to have a better and more reliable debugging pro-
cess has become possible. Parsian−tools and its dependencies graph are shown
in Fig. 19.

Parsian−sandbox Package. The parsian−sandbox package is a tool designed
to perform quick and convenient tests of different behavioral actions. It has been
implemented by the most used APIs in order to provide a better user experience.
Parsian−sandbox and its dependencies graph are shown in Fig. 19.

Fig. 19. Parsian packages graph

4.3 Log Analyser

The log analyzer was introduced in 2017 by parsian team [8] for the first time, this
year it was expanded by developing new tools which are explained specifically
in the following sections: Statistical Analyzer and Game Reporter. The first
step towards analyzing games was to detect game events such as shot, pass,
possession, and receive. An algorithm should distinguish them from each other
during the match. For example, a robot kicks the ball potently to score a goal
which increases the ball velocity immediately. This effect may occur while robots
are passing to each other too. Therefore, It would be difficult to distinguish them
from each other. Although using ball direction to differentiate them is common,



having a partial viewpoint by the vision would cause problems; the chip ball
path and ball collision are compelling instances of this. Therefore, it would be
difficult to write a program considering all those situations. Since it would be
hard to recognize the real events accurately, machine learning and classification
methods are helpful. Consequently, It would be more accurate to determine
the proper boundaries and separate event classes by decision-tree. The input
data were analyzed logs which were labeled previously by Parsian members. A
sequence of important factors grabbed from filtered vision data are given to the
decision-tree to define the rules required for detecting game events. Ultimately,
this program extracts a suitable knowledge that is beneficial in other tools that
are introduced in the following sections. It has been developed as a ROS node
and using Scikit-learn library in python in order to learn the decision-tree.

Statistical Analyzer This program provides online statistical information
about the game such as ball possession percentage, the number of yellow cards,
shot succeed percentage, pass succeed percentage, ball possession heatmap, shot
positions diagram, pass targets diagram and shot target diagram. Statistical
data is the most important information for coaches in a real soccer match to
make decisions. Likewise, the statistical knowledge presented by the statistical
analyzer would help developers to detect bugs and weaknesses of their program.
Game events and referee commands are the inputs for processing and calculat-
ing the statistical data. Ultimately, a GUI node will submit all statistics and
data need to be drawn, then present and update them in an rqt plugin for each
loop(Fig. 20).



Fig. 20. The shot analysis obtained from a part of a game: yellow robots show the
successful ones and red robots represents the failed shots. It can be understood that
the shots in a nearer distance to the goal are more probable to be succeeded.

Game Reporter The game reporter notifies the game events just like a real
soccer match reporter. It utilizes the knowledge of game events and generates a
proper sentence about each one and publishes them, which can be converted to
speech by various developed ROS TTS tools.

4.4 Opponent Defense Modelling

Opponent modelling can be helpful to predict opponent moves, perceive oppo-
nent team weaknesses, and simulate other teams’ strategies. An approach to
model defense strategies is to use past logs and extract features from them in
order to learn the opponent strategies. Variables of robots and the ball including
position, velocity, acceleration, and direction are effective features for learning.
Therefore, these features are extracted from logs and then preprocessed to be fed
as inputs to the learning method. As the first stage of preprocessing, we defined
two new features to be used instead of position:



1- the distance of their goal
2- the angle between the segment crossing from its position to their goal and the
segment from their goal to the field center.

Moreover, to make robots invariant to robots’ id, the robots of each team are
sorted by these two features. In addition, in order to make the data-set invariant
to the sides of the field horizontally and vertically, symmetries of each row with
respect to the horizontal and vertical axes crossing from the field center were
added. Finally, we normalized the data and fed them as input to the neural
networks [9].

After extracting useful features from logs for each frame, considering a spe-
cific team as opponent, we tried to learn their defense strategies. Assuming op-
ponent robots located in the opponent half field as defense robot and filling out
other opponent robots’ position in the data-set with zero, we tried two methods
that are explored in the following:
Firstly, we fed gathered data for one team and the ball as input. The two fea-
tures defined as positions for 8 robots of the opponent team are considered as
outputs. We tried to learn two-layered neural networks with 16 outputs which
indicated the number and position of defense robots. As shown in Fig. 21, the
result was not sufficient.

Fig. 21. Mean Absolute Error with respect to the epoch number

Secondly, we extracted the norm of the velocity vector for each defense robot
to learn the reaction of them in different situations. The angle between the veloc-
ity norm vector and the vector connecting the filed center and right goal center
is the final output of our model. This time, a neural network was implemented to
learn that angle which indicates the behavior of defense robots and goalkeeper.
The result was compelling for the goalkeeper and the two nearest defense robots



relative to the opponent goal, but we need to improve this method to predict
the defense reactions more accurately. Another part of the game was used as the
test dataset to assess this method; Fig. 22 represents the data loss function for
both test and train dataset with respect to the epoch number.

Fig. 22. Mean Absolute Error with respect to the epoch number

In Fig. 23 and 24 the x-axis represents predicted values by the model and
y-axis shows the true values for defense and goalkeeper. It is obvious that most
of the points accumulate on the bisector for the goalkeeper which means that
the predicted values and true values are accurately the same. Still, need to test
other learning methods such as deep learning to get better results.



Fig. 23. Goalkeeper angle prediction: predicted values with respect to real values

Fig. 24. Defense angle prediction: predicted values with respect to real values



5 Conclusion

This year our mechanical changes aimed to stabilize robots weight distribution
and dribbler system. In the electrical section, some minor changes have been
applied in order to reduce some systematic errors. In addition, some algorithms
have been utilized to modify the path planning and velocity direction control.
In the software section, all programming procedures could be distributed on
multiple machines, also an analyzer tool has been introduced to report and
analyze the games. More efforts needed to be put to achieve the ability to learn
and predict the opponents defense during the game.



References

1. Naderi MA. Alireza Zolanvari, Mohammad Mahdi Shirazi, Seyede Parisa Dajkhosh,
Amir Mohammad Naderi, Maziar Arfaee, Mohammad Behbooei, Hamidreza Kazemi
Khoshkijari, Erfan Tazimi, Mohammad Mahdi Rahimi and Alireza Saeidi Shahrivar.
Parsian 2015 Extended Team Description Paper for RoboCup. (2015)

2. Saeidi A., Malmir M.H., Shirazi M., Behbooei M., Boluki Sh., Kazemi M. and others,
Parsian 2014 Extended Team Description Paper for RoboCup. (2014)

3. M. Pocchiola and G. Vegter. Minimal tangent visibility graphs. Computational Ge-
ometry: Theory and Applications, 6:303-314,1996.

4. H. Rohnert. Shortest paths in the plane with convex polygonal obstacles. Informa-
tion Processing Letters, 23:71-76, 1986.

5. Rahimi, M.M., Shirazi, M.M., Gholyan, M.A.N., Chaleshtori, F.H., Moradi, N.,
Behzad, K., Roodabeh, S.H., Gavahi, A., Farokhi, F., Moghadam, S.A.G.A. and
Gharib, Y.A., PARSIAN 2018 Extended Team Description Paper.

6. ROS/NetworkSetup - ROS Wiki, http://wiki.ros.org/ROS/NetworkSetup.
7. ROS/Tutorials/MultipleMachines - ROS Wiki, http://wiki.ros.org/ROS/Tutorials/

MultipleMachines.
8. Rahimi, M.M., Shirazi, M.M., Arfaee, M., Gholian, M.A.N., Zamani, A.H., Hosseini,

H., Chaleshtori, F.H., Moradi, N., Ahsani, A., Jafari, M. and Zahedi, A., PARSIAN
2017 Extended Team Description Paper.

9. Trevizan, F.W., Veloso, M.M.: Learning Opponents Strategies In the RoboCup
Small Size League. In: Proceedings of AAMAS 2010 Workshop on Agents in Real-
time and Dynamic Environments (2010)


	PARSIAN 2019Extended Team Description Paper

