
PARSIAN 2020
Extended Team Description Paper

Mohammad Reza Kolani, Hossein Sharifzadeh Behzadi, Mahdi
Hajimohammadi Onidin, Yasamin Alizadeh Gharib, Mohammad Mahdi
Malverdi, Kasra Khalafi, Kian Behzad, and Mohammad Azam Khosravi

Electrical Engineering Department
Amirkabir Univ. Of Technology (Tehran Polytechnic)

424 Hafez Ave. Tehran, Iran
{mr kolani,hossein.sh,mahdi.hmohammadi,

alizadeh yasi,kasrakhalafi,mahdi.ma78,kian.behzad,m.a.khosravi}@aut.ac.ir
http://www.parsianrobotics.aut.ac.ir

Abstract. The Current paper issue to qualify as participation in the
RoboCup 2020 small size league. It illustrates detailed mechanical, elec-
tronics, control, and software improvements made by the Parsian Small
Size Soccer team since last year. The notable mechanical change is chang-
ing the internal wheel’s gear with external gear, redesigning the spin
mechanism, designing a dust protector, using silicon X-ring instead of
silicon O-ring, and changing the material of the board holder to reduce
weight and height of the robot. Likewise, some improvements have been
made in the electronic FPGA project and a review of Electronic boards.
We used a voice recognition package named Pocketspinx to control robots
and new rules to better code documentation.

Keywords: Open-Bus, motion control, voice recognition, machine learn-
ing,dribbler system, soccer robots

http://www.parsianrobotics.aut.ac.ir


1 Introduction

The Parsian small size team, founded in 2005, is organized by the Electrical
Engineering Department of Amirkabir University of Technology. The Parsian
aims to design robots compatible with International RoboCup 2020 rules. This
team has been qualified for 14 preceding years in RoboCup Small Size League.
The most significant achievements of the Parsian are first place in RoboCup2012
Passing and Shooting technical challenge, first place in RoboCup2013 Navigation
technical challenge, and fourth place in RoboCup2012 and 2017. Section 2.1
represents some mechanical changes in our robots. Then in section 2.2, electrical
design features have been explained. At last, section 3 introduced the software
improvements and novel tools that we started to use.

2 Hardware

2.1 Mechanic

Changing Wheel’s Gear. This year, our mechanical designer decided to
change robot wheel’s gear completely. In old design, internal gears have been
used and caused the following problems:

– It was challenging to build internal gear with these dimensions.
– The smallest eccentricity of gears would lock the wheels.
– A large amount of carpet lint envelope accumulated inside the gear and

disturb the robot’s movement.
– Complicated assembly and engagement with the motor’s gear

Therefore, to solve these problem, the calculations were done to determine the
external gear with a larger conversion ratio. To be able to move faster on a larger
ground and this was not possible with the internal gear. The wheel technical
drawing views and assembly on the robot are shown in (Fig. 1 and 2)

Fig. 1. The Gear Technical Draw-
ing

Fig. 2. Wheel on the Robot



Redesign dribbler system mechanism. In the previous mechanism of trans-
ferring power from the dribbler system’s motor to the spin back rod, a timing
belt and pulley were used, which had many problems including (Fig. 3 ):

– Rapid tearing of timing belt and the loss of the robot the spin during games
– Extremely high timing belt and rod spine vibration because of 12000Rpm

spin motor’s speed.
– Generate very undesirable noise when using spin.

Finally, the gear system was designed and tested to overcome the problems men-
tioned above. This design uses 1mm modular brass gears with a conversion ratio
of 1.5, which reduced the motor speed to 8000 rpm. Also, the torque transmitted
from motor to the spin’s rod, in this case, is 1.5 times larger than the previous
one (Fig 4 )[1] .

Fig. 3. The old dribbler system mechanism



Fig. 4. The new dribbler system mechanism

Dust Protector. One of the significant problems in our robots and maybe
other SSL teams is the entrance of carpet lint in robot and disturb the robot’s
mobile systems such as chip and kick. Therefore we tried to design parts that
Prevent entering lint, this protector made by a 3D printer. The design has been
shown in (Fig. 5) and old robot without a protector in (Fig. 6).

Fig. 5. Design of Dust Protector Fig. 6. Robot Without Protector



O-rings. This year our mechanical designer decided to use silicon X-ring instead
of silicon O-ring. X-rings have a more significant coefficient of friction between
the wheels and the ground Compared to the previous O-rings(Fig. 7 and 8)[2].

Fig. 7. The wheel with O-rings Fig. 8. The wheel with X-ring

Changing of board holder material. In order to reduce the weight and
height of the robot, we decided to lighten the robot’s parts. For this reason, The
material of the board holder changed from Polymethyl methacrylate(plexiglass)
to fiberglass, which caused reduced the robot’s weight 30 grams. Due to the high
yield stress of the fiberglass, we were able to use a thinner holder instead of the
old one, which reduced 5mm the robot’s height.



2.2 Electronic

Interfacing to the Top-Level Schematic using Open-bus module. Al-
tium designer (in the previous versions that supported FPGA projects), provid-
ing a module named open-bus. With the OpenBus System defined, we now need
to interface the OpenBus System document with our top-level schematic.

Open-bus has many advantages;

1. It helps the FPGA Project to be more understandable and readable.

2. The open bus makes changes and configures easier and more manageable.

3. Using the open bus prevents using many interconnects, and more can be im-
plemented in one interconnect inside an open bus by setting the appropriate
configuration.

4. Instead of all components in a “.Openbus” file even like TSK3000 processor
we can use a single block in.

5. Linking the associated Embedded Software project and ensuring the Appli-
cation Memory mapping is defined as required. This mapping is defined as
part of the embedded project options and determines how the embedded
software uses the mapped physical device memory blocks.

6. Configuration of the FPGA project to target the required physical FPGA
device can be achieved most efficiently using the auto-configuration feature
(including assignment of applicable constraint files).

In order to add this module first, we made an open bus module and tried
to move all parts after TSK3000, including all interconnects and output parts,
which will connect to other outer components, both input, and output pins. (Fig.
9)

Fig. 9. Openbus file



Openbus Design. The sheet entries required to populate the sheet symbol; it
can be obtained through the use of the sheet entries and ports synchronization
feature. At the heart of the OpenBus System is the OpenBus System docu-
ment. This document is created and managed using Altium Designer’s OpenBus
Editor[3].

The OpenBus Editor has the familiar look and feel of Altium Designer’s
Schematic Editor, with a streamlined set of resources applicable to the creation of
an OpenBus System. Filtering and inspection are provided courtesy of OpenBus
Filter, OpenBus Inspector, and OpenBus List panels, accessed from the OpenBus
panel access button to the bottom-right of the main design window. (Fig. 10)

Fig. 10. Openbus schema

It contains graphical representations of all devices available for use in creating
the system, grouped into the following four categories:

1. Connectors – provides Interconnect and Arbiter components that are func-
tionally similar to the WB INTERCON and WB MULTIMASTER devices
in the schematic world. Additional components allow for bus interface sig-
nals to be exposed outside of the OpenBus System document. A termination
port is also provided for occasions when a master port is not being used and
should be appropriately terminated. (if you do not, it can make some issues
in compiling the code as we faced some.)



2. Processors – provides all of the 32-bit processors supported by Altium De-
signer.

3. Memories – provides memory controller devices.

4. Peripherals – provides all of the I/O peripheral devices available for design.

The Interconnect component provides a means of accessing one or more pe-
ripheral devices over a single OpenBus interface. It connects directly to the IO or
MEM ports of a processor component, facilitating communication with I/O pe-
ripherals or physical memory devices, respectively. All ports from the OpenBus
System document will be initially listed as unmatched ports. The ports them-
selves come from two places: Ports automatically derived based on the external
interfaces of the peripheral devices (I/O peripherals and memory controllers).
In the OpenBus Signal Manager dialog, ports derived from the clock and reset
line definitions. (Fig. 11)

Fig. 11. OpenBus Signal Manager dialog.

In the main schematic file, we can add these features as a block that provides
all inputs and output ports. Then we connected to output and input ports to
other blocks like what it was in the previous version. When using the dialog
to add sheet entries to the sheet symbol, it is a good idea to select each bank
of related ports in turn, rather than all ports at once. This idea will make the



placement of the sheet entries within the sheet symbol that much easier. (Fig.
12)

Fig. 12. OpenBus block in schematic file.

After all of this, we should have reset the memory mapping configuration of
TSK3000 and peripheral mapping related to both processors and interconnect
components in order to make sure that nothing is going to make any problem.
(Fig.13 and 14)



Fig. 13. Memory mapping configuration of TSK3000.



Fig. 14. peripheral mapping.



3 Software

According to Parsian TDP in 2018 [4], Parsian’s AI code was migrated to the
Robot Operating System (ROS) framework. From last year we started to figure
out different advantages and tools that we are capable of ROS.

3.1 PocketSphinx package using for voice commands.

PocketSphinx package using for voice commands.
PocketSphinx is one of Carnegie Mellon University’s open-source large vocab-

ulary, speaker-independent continuous speech recognition engine. The CMUS-
phinx team describe the application of their product like this;

”Such applications could include voice control of your desktop, various au-
tomotive devices, and intelligent houses. Other possible applications are speech
transcription, closed captioning, speech translation, voice search, and language
learning.”

You can find this open-source package in the link [5] and [6]
First of all, we should have installed the ROS version of PocketSphinx and

join it to other nodes of our control project.
To install the PocketSphinx ROS package, there is a standard package which

”wiki.ros” has published, and you can see it in the link [7].
However, the problem was that this package is available just for ubuntu 14.04

and ROS indigo, whereas Parsian Robotic uses version 16 of ubuntu and ROS
kinetic. CMUSphinx team again has developed a package available for groovy,
hydro, indigo, kinetic, and lunar versions of ROS [8].

Finally, after some little issues relating to installing some other required
packages, we could run this package on the kinetic platform, and we used this
speech to text machine for recognizing voice commands and generating text as
an output.

It used a dictionary and language model to recognize the words and phones
in the speech. We streamed output of this recognition engine and mapped words
like ”move”, ”forward”, ”back”, ”backward”, ”right”, ”left” to real commands
for robots and this way we could control them by voice instead of using key-
board interaction or joystick while testing or any other times we need to control
manually.

Special thanks to the sphinx team of Carnegie Mellon University for their
great support.

3.2 Code documentation:

Obviously, through years in a software team, team members change. It is needed
for a software team especially a robotic team to have strong and rich documen-
tation near version control for their valuable codes. since 2015 Parsian team
started to use Github as version control. but for code documentation, we spent
a lot of time to hand over each domain from one old team member to new team
members. sometimes this procedure took a long time and some times it wasn’t



even possible. especially last year suddenly some of our most critical team mem-
bers should have left the team and there was not enough time to hand over all of
the skills and responsibilities. so we started to make complete, clear, obvious and
strong documentation for each part of code and we decided to refuse to accept
any task without revision it’s documentation. In this way, we started using some
new tools. you can find some of them with brief details as below:

1. Dropbox Paper: For internal software documentation use, Dropbox Paper is
an excellent choice. Like its predecessor Hackpad, you can use it to create
a private wiki for employees. You can link documents together, insert code
blocks, images, and page jumps, just as you’d demand from any documen-
tation tool.

2. Doxygen: Doxygen generates latex an HTML documentation from annotated
C++ sources, but it also supports other popular programming languages
such as C, Objective-C, C, PHP, Java, Python, IDL (Corba, Microsoft, and
UNO/OpenOffice flavors), Fortran, VHDL, Tcl, and to some extent D.

here are some of our rules in software team:

1. naming: The name of variables and any other objects should be a standard
abbreviated form of meaningful words and even phrases, in case of need.

2. class definition: Any defined class should have brief details including the
number of inputs and outputs and type of inputs and outputs and what it
does.

3. common class dictionary: any function or class which is used in more than
one section whether it is from a public library or not should be added to a
dictionary contains names of functions or classes near the definitions in the
previous case.

4. commenting: each part of code that contains an independent functionality
and each block of code that has some complexities like nesting loops should
have a separate comment.

5. beneficial comments: comments should be precise and relevant and should
involve anything that can affect the functionality of relating part of code.

6. maintaining comments: through code changes, comments should be kept up
to date and they have to change along with the code.



4 Conclusion

This year our mechanical changes aimed to stabilize dribbler system and im-
prove power transfer system. In the electrical section, some minor changes have
been applied in order to reduce some systematic errors and Open bus added to
increase portability and readability of FPGA project. In addition, we started
using tools like pocketsphinx, and also some rules has been made to better code
documentation In the software section.



References

1. Alireza Zolanvari, Mohammad Mahdi Shirazi, Seyede Parisa Dajkhosh, Amir
Mohammad Naderi , Maziar Arfaee, Mohammad Behbooei, Hamidreza Kazemi
Khoshkijari, Erfan Tazimi, Mohammad Mahdi Rahimi and Alireza Saeidi Shahrivar.
Parsian 2015 Extended Team Description Paper for RoboCup. (2015)

2. Kian Behzad, Elham Daneshmand, Nadia Moradi, Mohammad Reza Kolani, Mahdi
Hajimohammadi Onidin, Yasamin Alizadeh Gharib, Atiyeh Pirmoradi, Mohammad
Mahdi Rahimi, Mohammad Mahdi Shirazi, and Mohammad Azam Khosravi. Par-
sian 2019 Extended Team Description Paper for RoboCup. (2019)

3. Altium designer, Open-bus, https://techdocs.altium.com/display/FPGA/OpenBus+Tutorial+-
+Interfacing+to+the+Top-Level+Schematic

4. Rahimi, M.M., Shirazi, M.M., Gholyan, M.A.N., Chaleshtori, F.H., Moradi, N.,
Behzad, K., Roodabeh, S.H., Gavahi, A., Farokhi, F., Moghadam, S.A.G.A. and
Gharib, Y.A., PARSIAN 2018 Extended Team Description Paper.

5. cmusphinx - pocketsphinx, https://github.com/cmusphinx/pocketsphinx
6. Carnegie Mellon University - cmusphinx , cmusphinx.sourceforge.net.
7. pocketsphinx - ROS Wiki,http://wiki.ros.org/pocketsphinx
8. /github.com/cmusphinx/ros-pocketsphinx/tree/kinetic-devel - pocketsphinx,

https://github.com/cmusphinx/ros-pocketsphinx/tree/kinetic-devel kinetic
9. Rahimi, M.M., Shirazi, M.M., Arfaee, M., Gholian, M.A.N., Zamani, A.H., Hosseini,

H., Chaleshtori, F.H., Moradi, N., Ahsani, A., Jafari, M. and Zahedi, A., PARSIAN
2017 Extended Team Description Paper.


	PARSIAN 2020Extended Team Description Paper

