
URoboRus 2020 Team Description Paper

Petr Konovalov, Dmitry Korolev, Dmitry Kapustin, Galina Reneva, Anastasiia
Voloshina, Alexander Kalitin, and Alexander Fradkov

Saint Petersburg University, Saint Petersburg, Russian Federation
alexander.fradkov@gmail.com

Abstract. URoboRus1 is a team from the Saint Petersburg Univer-
sity (Russia) intended to participate in the RoboCup Soccer Small Size
League in 2020 in Bordeaux, France. This TDP presents the technical
overview of our robots, control software system and main algorithms. It
will be the first participation in this competition, consequently, a full
description of all components is provided.

Keywords: RoboCup · robotics · multi-agent system · hybrid central-
ized system

1 Introduction

The core of our team consists of students from department of Theoretical Cy-
bernetics of SPbU. We work together with engineers who developed robots and
participated in writing TDP. We started to create our solution in September 2018
on the basis of robots. By the end of January, 2019 the team has passed qualifi-
cation for Robocup-2019 in Sydney. This TDP is based on our TDP-2019 [1]. In
sections 1-4 brief information from our TDP-2019 is presented for convenience of
reading. Sections 5-7 are devoted to description of new developments made for
Robocup-2020. In Section 5 new features of robot design are introduced. Section
6 presents a new structure of communication channel. New control algorithms
are described in Section 7.

Successful participation in the professional Robocup-SSL league and con-
sequent improvement of hardware and software are not the only aims for us.
Related goals also include popularization of Robocup in Russia and develop-
ment of new solutions for educational robotics, which is affordable for schools
and universities. Some ideas described in this TDP can be used to achieve those
goals.

2 Robots description

In this section we provide a brief description of the robot specification and some
details about its implementation. More information about mechanical and elec-
trical design can be found in our TDP-2019 [1] and in our repository [2].

1 https://en.wikipedia.org/wiki/Uroborus



2 P. Konovalov et al.

(a) exterior view (b) interior view

Fig. 1: Robots

The robot (Fig. 1) consists of a straight kicker, a chip kicker, four omnidi-
rectional wheels, and a ball spinning device (dribbler), which is equipped with a
ball presence sensor.

The robot is equipped with four mid-flight brushless motors for omni-base
and one more ”dribbler” brushless motor to spin the ball. The motors and cir-
cuitry are fed by a removable battery with a capacity of 3000 mAh and an
average voltage of 26 volts. The operation time is ≈30 minutes with an average
current consumption of 6A. Details see in TDP-2019 [1].

3 Control software

This software was developed by using C++ with Qt framework [5]; this choice
was partly motivated by its cross-platform nature. Software implementation of
the algorithms was performed by using Matlab [6], partly due to its convenience
at the stage of prototyping.

The software system basically consists of the following two parts:

1. Centralized control tool [7] is commissioned to solve the following tasks:
– collecting data about field geometry and game situation from robots and

SSL Vision [8]
– providing this data to the Matlab algorithm library, which calculates

control signals for robots
– transmitting those signals to the robots

2. Matlab algorithm library [9] provides to analyze the situation in the field and
to assign the current roles to the robots based on this analysis. This library
is also used by the Matlab Engine to calculate control signals to every robot
with regard to its currently assigned role.

3.1 Centralized control tool

The connection with SSL server is established through SSL receiver module,
which distributes the received data among all other modules. Centralized con-



URoboRus 2020 Team Description Paper 3

trol tool sends commands to robots via Robots communication module. These
commands are evaluated by Matlab engine and collected by Matlab communica-
tion module. UI module is responsible for graphical user interface which displays
situation in the field and allows operator to start some algorithms in test mode
or control robots manually. Therefore SSL server provides sensor information for
control algorithms.

SSL receiver module The task of SSL receiver module is to support connec-
tion with SSL server and receive data from it. In this module we use standard
classes that are supplied with SSL-Vision and are intended to receive and parse
packets of Google Protobuf protocol [10]. The result of parsing is transmitted
to Matlab communication module and UI module via Qt signals and classes. If
packet from SSL server contains geometry we also generate Qt signal for updat-
ing field parameters which are saved as a Qt class and shared between Matlab
algorithm library and UI.

Robots communication module Task of this module is to maintain connec-
tion of the centralized control tool with the robots, to receive data from their
sensors, and to send control signals to the robots.

All commands to robot and data from him is counted in the robot system
of coordinates. Each robot is continuously sending packets with data from its
sensors via UDP datagrams.

Matlab communication module This module is responsible for launching
Matlab engine, transmitting coordinates of objects on the field to Matlab Engine
and extracting control signals for robots from engine after evaluation. We use
Matlab C++ Engine API library [11] for getting access to Matlab engine from
C++ source code. To underpin calculation of control signals we transmit the
coordinates of the ball and robots, as well as sensors parameters to Matlab
engine, and then evaluate file ”main.ml”. During evaluation special structure
”Rule”, which keeps control signals for robots, is initialized. After evaluation
this structure is exported from Matlab engine and sent to Robot communication
module.

1. To work with Matlab engine we have introduced class MlData which keeps
”Engine” and data of type ”mxArray” for importing and exporting from
Matlab engine (i.e., Yellows, Blues, Balls, etc.). To launch Matlab Engine
we use function engOpen(). After that it is needed to specify output buffer for
Matlab Engine by using engOutputBuffer(), set Rule to zero, and to specify
the directory where files with our algorithms are accomodated.

2. The coordinates of the balls and robots from the two teams are organized
in arrays of doubles. When needed to be transferred the the Matlab Engine,
these arrays are first copied to mxArrays. Then they are loaded to Mat-
lab environment by using function engPutVariable(). Finally, Matlab engine
evaluates ”main.ml” with new loaded data.



4 P. Konovalov et al.

Fig. 2: Main window of our application. 1. Game Field 2. Matlab block 3. Remote
control block 4. IP Settings 5. Information bars

3. The control signals calculated in Matlab algorithm library are inserted into
the structure Rule. For extracting it from Matlab algorithm library we use
function engGetVariable().

3.2 Matlab algorithm library

As it was mentioned in section Matlab Communication module, general scheme
of robots control consists of the next steps:

1. receiving new SSL packet with data about robots (Yellows, Blues) and ball
(Balls) positions on the field and loading them to the Matlab engine

2. main.ml evaluating, during which a special structure ”Rule” with control
signals is being filled

3. pulling this structure out and sending control signals to the robots

There are 5 variables which are shared between Centralized control tool and
Matlab algorithm library – Blues, Yellows, Balls, Rule, ballInside. The first three
variables describe data from SSL, the fourth one contains control signals for
robots, the last one defines is ball inside any robot or not. All this variables are
declared as double array (except ballInside, which is double scalar), both C++
and Matlab.

At the beginning of ”main.ml” evaluation all needed variables and structures
are initialized by using mainHeader function. During this function global struc-
ture RP are declared by using loaded data from SSL. This structure will be



URoboRus 2020 Team Description Paper 5

shared between all algorithms in the future evaluation. Structure RP contains
the next main fields.

1. Blue – array of structures with information about blue robots (robot presence
on the field, robot position, robot angle)

2. Yellow – array of structures with information about yellow robots (robot
presence on the field, robot position, robot angle)

3. Ball – structure which contains information about ball position
4. Pause – flag which controls stopping and starting of evaluation
5. Rule – array of structures with control signals for robots (Fig. 9)

During evaluation ”RP.Rule” should be filled with calculated control signals.
Rule has the next fields:

1. ”Robot in use” flag – controls do we need to send control signal to this robot
or not

2. Number of robot – number of robot according to SSL Pattern [12]
3. Speed X – robot speed along X-axe of its local coordinate system
4. Speed Y – robot speed along Y-axe of its local coordinate system
5. Kick forward flag – controls should robot kick forward
6. Speed R – robot angular speed
7. Kick up flag – controls should robot kick up

Fig. 3: Rule format description

Control signals are calculated using algorithms presented in section Matlab
algorithm library. To stop evaluation we use a special function PAUSE, which
switches ”RP.Pause” flag. This flag is checked on each iteration at the beginning
of main.ml and in case if it is true evaluation is stopped.

3.3 Build configurations

Compilers Initially, the project was developed for Windows platform only for
the sole reason that then it would be easily accessible by school students. This
motivated us to choose MSVC-compiler [13] for our application. Our current
objective is to remaster the software for running on Linux. As a first step to this
end, we have already converted the core programs to the to MinGW-compiler
[14]. Our software system can be compiled by both of these compilers for Win-
dows platform at this moment.



6 P. Konovalov et al.

Architectures Our application needs Matlab. So as not to impose a restric-
tion on the bit-version of the Matlab, both Matlab x64 and Matlab x86 were
supported.

Continuous Integration Travis CI [15] with static code analyzer Vera++ [16],
which automatically checks codestyle of pull requests, is used for automatic tests.
It means that in the cloud we run Vera++ execution file which check downloaded
from GitHub code (if it follows our fixed codestyle). We also added Appveyor
CI [17] to our project. It means that our main application is downloaded and
compiled by Appveyor server and if compilation succeed it is marked in GitHub
as successful build. Although Matlab is needed for running our software system
in full, but for testing build process of the project and running it, the testing
build process calls for only Matlab Runtime Compiler [18], which is in free access.
Our plans include transition from Matlab to MRC in order to make our software
independent of any commercial products.

SSL At the moment we have to support our Centralized control tool with two
versions of SSL-vision: old (2012 year) and new (2018 year). The old version is
available on both Windows and Linux, while the new version is only available on
Linux. We actively use the old one, because of more convenient way to deploy
our setup. At the moment we actively try to port new SSL-vision to Windows.

4 Algorithms

The developed algorithms can be categorized into three groups: basic algorithms,
advanced algorithms and roles (behaviour patterns). Now we illustrate every
group by briefly describing its most important algorithms. Details can be found
in our TDP-2019 [1].

4.1 Main terms

– SSL coordinate system – global coordinate system associated with data re-
ceived from SSL-vision

– Robot coordinate system – local coordinate system associated with robot
control model

– Robot position consists of the Cartesian coordinates of robot center and the
polar angle of robot in the SSL coordinate system – (x, y, α)

– Robot velocity is a vector of velocity in robot coordinate system – −→v
– Robot angular speed is angular robot speed – ω
– Minimal robot speed is a minimal speed at which robot starts to move – vmin
– Minimal angular robot speed is a minimal speed at which robot starts to

rotate – ωmin
– P, I, D – are the proportional, integral, and differential coefficients of the

considered PID-controller



URoboRus 2020 Team Description Paper 7

Fig. 4: Main terms

4.2 Basic algorithms

The basic algorithms are as follows.

MoveToPoint This algorithm controls robot’s moving to the destination point.
(Fig. 11)

Fig. 5: Algorithm MoveToPoint

RotateToPoint This function controls robot rotation to the destination point.
(Fig. 12)

GoAroundPoint This algorithm drives the robot around a given point at a
given distance R and controls that robot is rotated to the point (looking after
the point). (Fig. 13) If initially the robot is not at the requested distance from
the point, the algorithm preliminary drives the robot to this distance.

To calculate robot velocity we use MoveToPoint algorithm to point. Starting
from this moment we combine MoveToPoint and RotateToPoint into function



8 P. Konovalov et al.

Fig. 6: Algorithm RotateToPoint

Fig. 7: Algorithm GoAroundPoint



URoboRus 2020 Team Description Paper 9

MoveToWithRotation, which moves and rotates robot to the destination point
simultaneously

4.3 Advanced algorithms

TakeAim This function drives robot to the line, which connects ball and aim.
This function controls, that robot stops at the desired distance from the ball on
this line. (Fig. 14)

Fig. 8: Algorithm TakeAim

If robot is in desired point, it rotates to the point using RotateToPoint. In
other case, GoAroundPoint is called.

Catch ball This function allows robot to take a pass from other robot. The
main idea is as follows. As soon as the robot is hit by the incoming ball, do not
catch the rest the robot should move with velocity, which is co-directional with
ball velocity and depends on it. In this case kinematic energy will decrease, and
ball will not bounce off far. (Fig. 15)

BuildPath This function builds path between starting point and destination
point. There are several obstacles (defined as circles) on the plane between those
points. (Fig. 16)

MoveToAvoidance This function controls movement of the robot to the des-
tination point with obstacle avoidance. Obstacles are defined as circles.

4.4 Behaviour models

Goalkeeper This function describes goalkeeper behaviour. Goalkeeper is mov-
ing along the goal and its trajectory is a line. If estimated trajectory of the ball



10 P. Konovalov et al.

Fig. 9: Algorithm CatchBall

Fig. 10: Algorithm BuildPath

Fig. 11: Algorithm Goalkeeper



URoboRus 2020 Team Description Paper 11

is crossing the goal, robot is moving to the point of their intersection. Estimated
trajectory is a line calculated from previous ball positions. (Fig. 17)

t =

−−→
CBnew ∧ −→u
−→
δ ∧ −→u

point = Bnew + t ·
−→
δ

where ∧ – pseudo-scalar product.

Attacker. This function controls attacker behaviour. It provides kick in aim
direction.

In this algorithm every combination of robot position, ball position and aim
position belongs to one state of four possible states. Depending on what state
describes the current arrangement of these objects robot makes a decision on
further actions.

5 Improvements of Mechanical Design in 2020

5.1 New Dribbler

The most important part of improving the design of our robot was changing the
dribbler module Fig.12. In addition to the two main problems of the dribbler -
grabbing the ball and centering it, we worked on the manufacturability of the
parts and simplifying the assembly and replacement of the dribbler roller when
it is worn.

Capture the ball. In almost any scheme of the mechanics of the dribbler when
centering the ball, it is pulled deeper into the robot with a change in the position
of the roller. In our scheme, the axis of the roller moves along an arc of a circle.
Previously, the length of this arc was too small for a full grip of the ball, in
addition, the elastic element that returned the roller and the initial position was
too rigid. We changed the design of the dribbler and now a spring is used as an
elastic element, the rigidity of which can be changed with the adjusting screw.
By adjusting the stiffness of the spring, we can change the pressure force with
which the roller presses onto the ball. It may allow one to find the mode making
retraction (capture) of the ball easier, and therefore improving control over the
ball.

Centering the ball. We have changed the approach to centering the ball, and
the bucket now plays the role of the guide, rather than the roller. Thus, we
decided to simplify the manufacture of the roller, as well as its replacement after
wear. Now the roller has a smooth cylindrical shape, and an indentation appeared
in the bucket, along which the ball is attracted to the center of the robot while
simultaneously contacting the bucket and roller. The smooth surface of the roller



12 P. Konovalov et al.

Fig. 12: New Dribbler.

on the one hand simplifies its manufacture, and on the other hand slows down
its wear due to the absence of drops and protruding parts. In addition to the
two main tasks of capturing and centering the ball, we simplified the assembly
and disassembly of the design of the dribbler and now to replace the role, you
do not need to disassemble a significant part of the robot, but just remove one
part. To protect the sensor of the presence of the ball from external influences,
we made milled cavities in the suspension of the dribbler, in which the printed
circuit boards of the sensor are installed.

5.2 New Kicker

The overall layout of the robot has changed and we have more space in height
to position the kicker coils. We changed their shape from rectangular to round,
because of which they became higher, but narrower, see Fig.13. Now, more side
space from the kicker coils appeared, and we placed the capacitors vertically
in the vacant space. This place was enough for the location of four capacitors
instead of two, which allowed us to significantly increase the force of impact
on the ball and now we can achieve a limit on the strength of the impact. In
addition, the round shape of the kicker coils increases the manufacturability of
parts, simplifying and cheap-ening their manufacture, and round coils are easier
to wind. New design of robots is seen in Fig.14.

6 Improvements of the Communication System in 2020

1 Previous design When we developed our team to the RoboCup 2019, the
ESP8266EX module from Espressif Systems was used to provide communication
between mobile robots and the base station, whose role is played by a personal
computer. However during the competition the other Wi-Fi points will be online



URoboRus 2020 Team Description Paper 13

Fig. 13: New Kicker.

Fig. 14: New Robot.



14 P. Konovalov et al.

and a possibility of large congestion of devices using Wi-Fi that cause delays in
the information transmission from mobile robots to the base station should be
taken into account. To avoid interference and interruptions in communication
with other devices, it was decided to arrange communication via radio chan-
nels and to use the NRF24L01+ radio module from Nordic Semiconductor. The
appearance of the module is shown in Fig.15. On the base station, there are 7 an-
tennas, while each module located in robot has two antennas hidden inside robot.
Based on this module, the following technical solution is implemented. In the

Fig. 15: Radiomodule NRF24L01+

current version of the robots, the STM32F407VGT6 microcontroller communi-
cates with the ESP8266EX module via the SPI interface. Then the ESP8266EX
module transmits data via Wi-Fi over the network to which it is connected and,
thus, the data goes to a personal computer, where it is processed and control
commands are sent from the computer.

It is seen from Fig.16 that to build a network, a separate transmission module
and a separate reception module are used. This is necessary to ensure stable
communication with the smallest delay time. Reducing the delay is achieved due
to the lack of the need for constant switching of the module between the modes
of ”reception” and ”transmission”. Due to the fact that there are no suitable
routers on the market for NRF24L01+, it is necessary to develop a base station,
which is shown in Fig.16. The base station communicates mobile robots with a
personal computer. Since in the previous version of the system, a Wi-Fi-based
network and the connection to the router via Ethernet were used, in order to
avoid significant changes in the upper level control system, we tried to preserve



URoboRus 2020 Team Description Paper 15

Fig. 16: Radio Net Structure



16 P. Konovalov et al.

the communication structure of the personal computer with the base station as
much as possible. The base station is a printed circuit board on which there are
two NRF24L01+ modules, a power supply, an STM32F407VGT6 microcontroller
and an Ethernet physical layer converter chip. The appearance of the base station
is shown in Fig.17.

Fig. 17: Base Station

7 Improvements of the Algorithms in 2020

The improvements were aimed at better estimation of the state of the game and
better taking the decisions. We formally posed and solved the task of finding
optimal direction of the hit on goal in presence of many opponents. It is sup-
posed that some models for motion of players and the ball are adopted. At the
same time, the requirements for the model turn out to be quite natural and
slightly restrictive, which makes the described algorithm applicable even with
very accurate modeling of the movement of the ball and robots.



URoboRus 2020 Team Description Paper 17

7.1 Notation

ρ(·) is Euclidean metrics

R is radius of each robot-player

B is position of the ball

{Ak}Mk=1 is the set of the opponent robot positions

Or = {(x, y)| ρ(Ar, (x, y)) ≤ R} is the set of points on the plane covered by a robot r

S = {(x, y)| x2 + y2 = 1} is the set of the directions

G(P, d) = {P + td| t ≥ 0} is the ray directed to d ∈ S from P

a : b is the set of natural numbers between a and b

7.2 Optimal hit to the goal: problem statement

Let there be a possibility to measure ability of the robot to catch the ball sent
to the direction d ∈ S from point B. Namely let a family of real functions fr(d)
measuring ability of a robot to catch the ball be given. Here r is the number of
the robot. We assume that the robot r will catch the ball if

fr(d) ≥ 0 (1)

Assume further that functions fr(d) have the following property:

ρ(Or, G(B, d1)) > ρ(Or, G(B, d2))2 => fr(d1) < fr(d2) (2)

In other words, the smaller the distance between robot and the trajectory of the
ball, the easier the catching of the ball for the robot.

Consider the function f(d) = max
r∈1: M

fr(d), characterizing security of the di-

rection d. It is clear that (1) the ball kicked along the ray d will be catched by
some robot in the direction d under the following condition

f(d) ≥ 0. (3)

Under above assumptions and notations the problem of search for an optimal
direction can be formulated as finding d

∗
, satisfying relation

d
∗

= arg min
d∈S

f(d) (4)

7.3 Optimal hit to the goal: algorithm

It is clear that it is sufficient to seek for the optimal solution of the problem (4)
over the set of the directions allowing to see the gates directly (Fig. 18). Such a
set will be denoted Sg and called set of admissible directions (in Fig. 18 this set
is marked by green sectors).

2 if A,B are the sets on the plane, then ρ(A,B) = inf
a∈A b∈B

ρ(a, b)



18 P. Konovalov et al.

Fig. 18: Notations.

Functions fr(d) in the set Sg can be parametrized as follows

ϕr(α) = fr(d(α))

where α stands for the angle between the direction in question and extremal
direction (Fig. 18). Similarly,

ϕ(α) = f(d(α)) = max
r∈1: M

ϕr(α). (5)

and (4) is equivalent to finding α∗ satisfying

α∗ = arg min
d(α)∈Sg

ϕ(α)

Note that the set Sg is split to a few continuous segments and it follows from
condition (2) that in every segment the function ϕ defined in (5) is unimodal 3.

It is well known that the minimum of a unimodal function can be found with
an arbitrary accuracy by methods of 1D search, e.g. Fibonacci or golden section
method [19]. The search algorithm for α∗ is as follows:

1. Fix continuous subsets Sg and corresponding uncertainty segments
[α1, α2], [α3, α4], . . . , [α2K−1, α2K ], where K is the number of continuous
subsets.

2. For any segment [α2j−1, α2j ] N steps of Fibonnacci search are performed.
α∗j = arg min

α∈[α2j−1, α2j ]

ϕ(α)

3. The estimate of the optimum is evaluated α∗ = arg min
α∈{α∗

1 , α
∗
2 ,..., α

∗
K}
ϕ(α)

3 Function ϕ is called unimodal if there exists x∗ such that ϕ(x) is decreasing for
x < x∗ and ϕ(x) is increasing for x > x∗



URoboRus 2020 Team Description Paper 19

7.4 Optimal hit to the goal: analysis and implementation

It can be shown that asymptotic convergence time of the algorithm is
O(M ln L

ε ·
∑M
r=1 T (fr)), where T (fr) is time of function fr evaluation, L is

the gate width, ε is the required accuracy of α∗ evaluation. For T (fr) = O(1),
convergence time is of the order O(M2 ln L

ε ), which is appropriate for the game
where M ≤ 8.

The above algorithm is implemented under assumption that velocities of the
ball and robots is constant. Let u be velocity of the ball, v be velocity of the
robots, k = u

v . Let k > 1, i.e. robots are more slow than the ball. Choose
conveniency functions fr as follows:

fr(d) = max
P∈G(B,d)

{ρ(B, P )− k · ρ(Or, P )},

Then fr means maximum distance between robot and ball when the robot
reaches the ball trajectory taken with negative sign if ball has passed the crossing
point earlier than the ball. In this case expression for fr is as follows

fr(d) = xq − yq ·
√
k2 − 1

where yq = ρ(Or, G(B, d)), xq = ρ(B, P ), if P is the nearest point of the
trajectory of the ball to the robot (Fig. 19). Therefore condition (2) is valid and
the algorithm is applicable.

Fig. 19: Illustration of xq, yq and P . Fig. 20: Example how algorithm
works.

During real game the above algorithm serves as the auxiliary one for attack.
It works as follows:

1. Evaluation of the optimal attack direction d
∗
;

2. The robot takes aim in the direction d
∗
. If it happens that f(d) < 0, where

d is the direction of the robot sight then robot kicks the ball;
3. After the robot takes aim d

∗
, it kicks the ball.



20 P. Konovalov et al.

8 Acknowledgements

We wish to express our deep gratitude to Prof. Alexey Matveev (SPbU) for his re-
view and useful advice for the scientific sections of this paper. Also, the project
is supported by CyberTech Labs Co Ltd, a company behind the educational
robotics kit TRIK [20], which is widespread in Russian schools, particularly to
Anastasia Kornilova, the main organizer and author of the 2019 TDP URoboRus
who put tremendous efforts to make our qualification at Robocup-2019 possible.
We thank research institutions Russian State Scientific Center for Robotics and
Technical Cybernetics (RTC) and Institute for Problems of Mechanical Engi-
neering of Russian Academy of Science (IPME RAS). Special thanks should be
given to previous research group (circa 2012-2016), which developed Robocup-
SSL game for two-wheeled robots based on Lego, Arduino, and TRIK – Ilya
Shirokolobov, Ruslan Sevostyanov, Kirill Ovchinnikov – for their responsiveness
and advertency.

Finally, we wish to thank Presidental Lyceum of physics and mathematics
239 and CybetTech Labs Co Ltd for their valuable technical support on this
project.

References

1. 2019 TDP URoboRus, https://ssl.robocup.org/wp-content/uploads/2019/03/
2019_TDP_URoboRus.pdf

2. Electrical and mechanical components https://github.com/robocup-ssl-russia/
schemes

3. Russian inter-university robotics school, official webpage, https://vk.com/

roboschool_vlg

4. Robofinist, official webpage, https://robofinist.org
5. Qt, official webpage, https://www.qt.io
6. MATLAB, official webpage, https://www.mathworks.com/products/matlab.html
7. Centralized control tool repository, https://github.com/robocup-ssl-russia/

LARCmaCS

8. SSL Vision system, official repository, https://github.com/RoboCup-SSL/

ssl-vision

9. Matlab algorithm library repository, https://github.com/robocup-ssl-russia/

MLscripts

10. Google Protocol Buffers, official webpage, https://developers.google.com/

protocol-buffers

11. Matlab C++ Engine API, official webpage, https://www.mathworks.com/help/
matlab/matlab_external/engine-c-api-1.html

12. Official SSL Vision standard pattern, http://wiki.robocup.org/images/9/96/

Small_Size_League_-_Standard_Pattern_2011.pdf

13. Microsoft Visual C++ compiler, official webpage, https://visualstudio.

microsoft.com/ru/vs/features/cplusplus

14. MinGW compiler, official webpage, http://www.mingw.org
15. Travis CI, official webpage, https://travis-ci.com
16. Static code analyzer Vera++, official webpage, https://bitbucket.org/

verateam/vera/wiki/Home

https://ssl.robocup.org/wp-content/uploads/2019/03/2019_TDP_URoboRus.pdf
https://ssl.robocup.org/wp-content/uploads/2019/03/2019_TDP_URoboRus.pdf
https://github.com/robocup-ssl-russia/schemes
https://github.com/robocup-ssl-russia/schemes
https://vk.com/roboschool_vlg
https://vk.com/roboschool_vlg
https://robofinist.org
https://www.qt.io
https://www.mathworks.com/products/matlab.html
https://github.com/robocup-ssl-russia/LARCmaCS
https://github.com/robocup-ssl-russia/LARCmaCS
https://github.com/RoboCup-SSL/ssl-vision
https://github.com/RoboCup-SSL/ssl-vision
https://github.com/robocup-ssl-russia/MLscripts
https://github.com/robocup-ssl-russia/MLscripts
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.mathworks.com/help/matlab/matlab_external/engine-c-api-1.html
https://www.mathworks.com/help/matlab/matlab_external/engine-c-api-1.html
http://wiki.robocup.org/images/9/96/Small_Size_League_-_Standard_Pattern_2011.pdf
http://wiki.robocup.org/images/9/96/Small_Size_League_-_Standard_Pattern_2011.pdf
https://visualstudio.microsoft.com/ru/vs/features/cplusplus
https://visualstudio.microsoft.com/ru/vs/features/cplusplus
http://www.mingw.org
https://travis-ci.com
https://bitbucket.org/verateam/vera/wiki/Home
https://bitbucket.org/verateam/vera/wiki/Home


URoboRus 2020 Team Description Paper 21

17. Appveyor, official webpage, https://www.appveyor.com
18. Matlab runtime compiler, official web page, https://www.mathworks.com/

products/compiler/matlab-runtime.html

19. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. (2007), ”Section
10.2. Golden Section Search in One Dimension”, Numerical Recipes: The Art of
Scientific Computing (3rd ed.), New York: Cambridge University Press.

20. Cybernetic constructor set TRIK, official webpage, https://trikset.com official
English webpage, http://blog.trikset.com/p/eng.html

https://www.appveyor.com
https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html
https://trikset.com
http://blog.trikset.com/p/eng.html

	URoboRus 2020 Team Description Paper

