
RoboFEI 2022 Team Description Paper

Álvaro D. Neto, Bruno Bollos Correa, Gabriel M. Schiavetto, Gabriel S. L.
Agune, Giovani S. Pereira, Guilherme W. Cardoso, Henrique B. Simões,

Isabella R. Moscardo, João V. L. Aguiar, Leonardo da S. Costa, Luiz F. L.
Baptistella, Wesley de S. Motta, Flavio Tonidandel, Pĺınio T. A. Junior, and

Reinaldo A. C. Bianchi

Robotics and Artificial Intelligence Laboratory
Centro Universitário da FEI, São Bernardo do Campo, Brazil

{flaviot, rbianchi, plinio.aquino}@fei.edu.br

Abstract. This paper presents the current state of the RoboFEI Small
Size League team as it stands for RoboCup International Small Size
League competition 2022, in Bangkok, Thailand. The paper contains
descriptions of the new robot decision to pass and shoot to the goal and
the positioning of the attacker robots during normal game.

1 Introduction

For RoboCup 2022, the RoboFEI team intends to use mostly the same electronics
and mechanical design that have been used over the last years.

Some significant advances were made in our software, the improvements were
verified in the 2021 Small Size League RoboCup, which resulted in our best
placement ever in the competition, getting us in the hall of fame of the league [1].
The objective now is to improve furthermore the software system and, according
to our plans, we should be able to start replacing at least two robots per year
from now on. Due to the COVID-19 pandemic, most of the development made
in the past two years has been made in the software features, this TDP focuses
mainly on those. With our researches, we hope to bring innovations and new
ideas for the community.

2 Software

In the strategy software, we have have mostly improved the robot decision to pass
and shoot to the goal, the offensive positioning of the robots and the dynamic
between defenders and attackers during the game.

Additionally, we have started to open source some of our works, as we believe
that sharing software is equivalent to sharing knowledge, which is important for
educational purposes. Everything mentioned in this paper can be found at our
GitLab page [2].



2.1 New log analyser tool

Inside the group of projects that were released in the past year, we have the
LogAnalyserRoboFEI-SSL, which is a software that has the main purpose of
dealing with log files from Small Size League RoboCup matches [2]. Its main
features are: read and run a log file and send the messages from the referee
and the vision over the network using the UDP protocol. It also contains its
own graphical client, which contains the drawing of the field with many other
informations about the match, sent by the game controller and the ssl-vision. A
screenshot of the running software can be seen on Figure 1.

Fig. 1. Screenshot of the software LogAnalyserRoboFEI-SSL during its execution.

Alongside with this, the software is capable of detecting when a pass or a
shoot to goal occurs and, once the move ends, evaluate its quality by giving it
a score from 0 to 250. A zero score means that the pass or shoot decision was
bad, while a score of 250 means that the move was very good.

The evaluation of a shoot move follows the decision tree [3] shown in Figure 2.
It can be seen that the maximum score is given only if the move resulted on a
goal and the minimum score occurs only if the ball did not even get to the
opponent defense area.

The evaluation of a pass move is more complex. If the receiver does not get
the ball, the score will be zero, otherwise, the score will depend on what the
receiver did with the ball. The analysis of the receiver move is called parallel
move. The decision trees that evaluate the score of a pass move and the parallel
move can be seen in Figure 3 and 4, respectively.



Did the ball get to
the defense area?

Did a goal occur? Score = 0

Was the ball going
towards the goal?

Score = 250

Score = 150
Did the goalkeeper

still caught the ball?

Score = 50 Score = 100

NoYes

NoYes

NoYes

NoYes

Fig. 2. Shoot move evaluation decision tree.

Did the receiver
get the ball?

Go to parallel move. Score = 0

NoYes

Fig. 3. Pass move evaluation deci-
sion tree.

Parallel move

Dribbling
move

Pass move Shoot move

Did the receiver
get the ball?

Score = 200 Score = 100

Did the robot hold
the ball for more
than 2 seconds?

Did the ball
get to the

defense area?

Did the robot hold
the ball for more
than 3 seconds?

Did a goal occur?

Score = 50

Score = 100

Did the robot hold
the ball for more
than 4 seconds?

Score = 200

Score = 250

Was the ball
going towards

the goal?

Score = 100

Score = 150

Score = 200 Score = 150

NoYes

No
Yes

NoYes

No
Yes

NoYes

NoYes

NoYes

Fig. 4. Parallel move evaluation decision tree.

When a move is evaluated, some extra parameters are measured and written
into a file alongside with the score of the move. That way, at the end of the
process, this file has the information of all pass and shoot moves that occurred



during the analysed match. The parameters evaluated on a shoot to goal and on
the pass move can be seen on Table 1.

Table 1. Shoot to goal and Pass move parameters.

Move Parameter Description

Shoot
to goal

X0 Angle of the free path (without opponents) from
the ball to the opponent goal

X1 Distance from the ball to the opponent goal

X2 Opponent’s marking (distance of the closer oppo-
nent to the ball)

Pass

X0 Angle of the free path from the ball towards the
receiver

X1 Distance from the ball towards the receiver

X2 Opponent’s marking over the receiver (distance of
the closer opponent to the receiver)

X3 Angle between the line from the ball to the re-
ceiver and the line from the receiver to the oppo-
nent goal

X4 Angle of the free path from the receiver towards
the goal

X5 Distance from the receiver to the opponent goal

X6 Opponent’s marking over the ball (distance of the
closer opponent to the ball)

X7 A parameter that mesures if the ball is getting
closer or farthest from the opponent goal

At the end, the parameters of the pass and shoot moves are normalized into a
scale from 0 to 250 of only integers numbers. The normalization of all parameters
is done according to the curve shown in Figure 5, where y is the normalized
parameter and x is the parameter before the normalization, therefore, y0 = 0
and y1 = 250.

For the distance parameters, x0 = 0 and x1 is one half of the width of the
field (disregarding the offset), i.e. x1 = 6 m for division A rules, and x1 = 4.5 m
for division B rules. For the parameters that measure the angle of the free path,
x0 = 0 and x1 = 45◦.

Database of passes and shoots from RoboCup matches With the files
generated from the analysis of the match, it is possible to create a database



Y

Xx0 x1

y1

y0

Fig. 5. Normalization curve.

containing the information of all passes and shoots from older matches of the
league using its log files. This was done for the most outstanding teams from
RoboCup 2017, RoboCup 2019 (Division A only) and RoboCup 2021 (online);
the results were uploaded into a GitHub Repository [4].

2.2 Pass and shoot success prediction

Until RoboCup 2019, our team did not have an elaborate strategy when the ball
is in play, the robot was programmed to always kick towards the opponent goal
when it had possession of the ball. As the league evolved, teams have increasingly
valued the passing strategy in their software; the team’s behavior in rolling ball
situations is of supreme importance and essential for any team.

Knowing this, we decided to implement a way for the robots to decide, on
the most efficient way, when to pass the ball to other robots and shoot to the
goal. For that purpose, a supervised machine learning regression model was
designed [5] using the database mentioned in the last section. As result, given
the input parameters from the field, the model is able to predict which move
would be better in the given circumstances, by finding the biggest score of all
possible moves, which is to pass to all alies or shoot towards the goal.

In order to create the machine learning model, the scikit-learn [6] python
module was used. There are currently 5 types of Machine Learning (ML) models
implemented in the strategy software:

– Linear Regression: a simple, popular and fast ML model that learns linear
bias of the input features in order to generate its output [5];

– k-Nearest Neighbor (KNN): another simple ML model that make its predic-
tions based on the input closest points in the dataset [5];

– Random Forest: a bootstrap ensemble learning algorithm that combines mul-
tiple weak learners for the purpose of make a strongest learner that increase
its prediction power [5],

– AdaBoost: a boosting ensemble learning algorithm that combines multiple
weak learners into a weighted sum way, making the best learners more im-
portant in the final prediction [7];



– Gradient Boosting: another boosting ensemble learning algorithm on which
the residuals are used as input on the next consecutive learner, hence building
an additive ML model [5].

Pass and shoot to the goal prediction analysis For the analysis of the shoot
move, data from matches of ER-Force, KIKS, RoboFEI and TIGERs Mannheim
from Robocup 2021 were used, arranging a dataset of 250 samples. On the other
hand, for the analysis of the pass move, data from matches of ER-Force, KIKS,
RôboCIn, RoboFEI and TIGERs Mannheim from Robocup 2021 were used,
making a dataset of 751 samples.

For the analysis of the machine learning models, in order to determinate the
R2 score from training and testing dataset and the importance of each feature
on the prediction of a new data, the following process was performed multiple
times:

– Randomly separate 80% of the dataset for model training and the remaining
20% for the testing dataset;

– Create the model with the training dataset;
– Calculate and save the importance of each feature of the model;
– Make model predictions with the test and training datasets and save the

value of the prediction R2 score, which is a value between 0 and 1 that
measures the quality of the predictions for a dataset.

This process was repeated 500 times. The final prediction score is the average
of the scores obtained on each iteration, the final importance of each feature is
determined the same way.

It was also measured the time for the obtained model to predict 10000 random
input datas, making it possible to calculate the average time for the model to
predict each output. Since all tests were made on the same condition, it became
possible to compare their results and select which one of them are better for
implementing on the strategy software.

The results obtained for the shoot to goal and pass prediction are shown in
Tables 2 and 3, respectively. All tests mentioned were made for five different
ML models: Linear Regression (LR), AdaBoost (AB), Gradient Boosting (GB),
Random Forest (RF) and k-Nearest Neighbor (KNN). The test and train R2

scores are multiplied by 100, thus being in a scale between 0 and 100.
The results seen on Table 2 show that the fastest model to predict the evalu-

ation of a shoot move is the Linear Regression model with an average prediction
time of 0.04 µs, while the slowest one is the KNN model, with a prediction time
of 3 µs. However, even the KNN prediction time is too small to be taken into
consideration, since the function to predict the shoot and pass move is called,
on the worst possible scenario, every 25 ms, this way, that the worst prediction
time would need to be more than 100 times longer in order to slow down the
software performance. Therefore, this parameter can be ignored at the moment.

By analyzing the test and train scores, the Gradient Boosting model seems
to be the better choice for the shoot to the goal prediction on an environment



Table 2. Shoot to the goal prediction results.

LR AB GB RF KNN

X0 importance [%] 14 13 13 7 16

X1 importance [%] 54 68 82 88 71

X2 importance [%] 32 20 4 5 13

Train R2 score (0–100) 19.7 26.2 24.8 21.8 23.4

Test R2 score (0–100) 13.9 12.4 15.6 12.8 12.9

Prediction time [µs] 0.04 1.46 0.17 0.42 3.02

Table 3. Pass prediction results.

LR AB GB RF KNN

X0 importance [%] 26 48 51 67 79

X1 importance [%] 13 7 8 4 3

X2 importance [%] 26 11 10 8 6

X3 importance [%] 1 6 5 2 1

X4 importance [%] 4 5 3 2 2

X5 importance [%] 6 6 7 7 4

X6 importance [%] 18 13 12 8 3

X7 importance [%] 4 4 4 2 2

Train R2 score (0–100) 23.2 31.2 39.1 28.1 24.1

Test R2 score (0–100) 20.4 20.3 20.8 21.1 20.8

Prediction time [µs] 0.06 2.86 0.67 1.31 16.84

with three features (X0, X1 and X2) with a dataset of 250 samples. However,
the other 4 models have done good predictions as well and the difference of the
prediction quality is not too significant. In practice, any of the five models would
do a good work, with a small difference between them.



It can also be seen that the X1 feature, which is the distance between the ball
to the goal, is way more important than the other two features in all models that
were tested. In summary, according to the Robocup 2021 matches, the success
of a shoot to the goal depends primordially on the distance of the ball towards
the goal.

Seeing the Table 3, it can be seen that the slowest model, which is KNN once
again, takes 17 µs on each prediction, but again, it is not slow enough in order
to be taken into consideration.

The results shown in Table 3 show that the test score is very similar to all five
models, but KNN and linear regression presented both the lowest train score,
which allows the conclusion that those are the most generic models.

Analysing the importance of each feature, it can be seen that X0 is by far the
most relevant of them. Bellow X0, the second and third most relevant parameters
are, respectively, X2 and X6. So, according to the matches analysed, in order to
make a good pass, it is important that the receiver must be as distant as possible
from the opponents and that the path between the ball and the receiver must
not have too many obstacles.

Pass and shoot success prediction in the strategy software With these
new changes, when the robot approaches the ball, if the ball is not being pos-
sessed by the opponent team, the software evaluates the score of the move to
pass to other robots on the field and to shoot on the opponent goal. Robots too
close to our defense area and too close to the ball are ignored. At the end, if
the shoot score is greater than 150, the robot shoots to the goal, otherwise, it
chooses the move that resulted in the greater score.

Since the strategy software is written in C++ and the machine learning
models used scikit-learn with python, a python interpreter had to be embedded
into the C++ application. This has been accomplished with the help of the
pybind11 library [8], which made possible to create a python object via C++
code, call python methods and getting its types properly converted into C++
types.

The ML models that seemed to work better were Gradient boosting for the
shoot to goal prediction and AdaBoost for the pass prediction. Linear regression
was also a good choice, especially for the shoot to the goal prediction and it has
the advantage to be an algorithm very easy to be implemented. Random forest
also worked well on the pass to the goal prediction, but not as good as when
compared with AdaBoost.

2.3 Mines positioning

With the pass strategy implemented, it was also needed that some of the robots
in the field could get into a good position to receive a pass close to the opponent
goal and, preferably, free of marking. For that purpose, the Mines Positioning
algorithm was developed.



The Mines positioning is a simple algorithm used to determinate the point,
inside a matrix of n rows rows and n lines lines, further away from the objects
called mines and closest to the object called fortune.

It works by giving a score from 0 to 9 to each point of the matrix. The mines
acts decreasing the score of its closest points, while the fortune decreases the
score of its furthest points.

In the software, this is used to position the robots with offensive behaviour
during normal start and all robots during opponent ball placement. In order to
use it, the matrix must be proportional to the dimensions of the field, this can
be seen on Equation (1).

n rows

n lines
∝ field width

field height
(1)

That way, each element inside the matrix represents one square field area.
The area of each square is given by Equation (2).

square area =
field width · field height

n rows · n lines
(2)

The inverse of square area is the scale of the matrix, which is currently set
as 0.01 mm−2. For better results, it is important that the square area must not
be much larger than the area occupied by a robot on the field.

In order for the algorithm to be adequate for different situations, there are a
few attributes that can be defined each time it is used. They are:

– additional mines positions: A list with the coordinates of mines to be added
beside the robots;

– consider ally mine: A boolean variable that defines if ally robots should be
considered as mines;

– begin area and end area: The points on which the destination should be.
This way, only points P (x, y) on which begin area.x < x < end area.x and
begin area.y > y > end area.y are considered by the algorithm;

– fortune point: The position of the fortune point;
– minimum distance fortune and maximum distance fortune: Are the dis-

tance intervals from the fortune point on which the fortune acts. This
means that the score is always zero for points on which the distance from
fortune point is larger than maximum distance fortune, while for points
on which this distance is less than minimum distance fortune, the score is
unchanged by the fortune. For the other points, the score will be affected by
the distance from the fortune point;

– mine radius: The radius of each mine;
– mine reach length: The maximum distance from the border of the mine on

which the mine is still effective.

Every position of the matrix between the points begin area and end area
is evaluated, depending on the position of the mines and of its distance to the



point of fortune, with a score from 0 to 9, where, the bigger the score the better
is the position.

At the end of the evaluation, the chosen point will be in the center of the
region of points with the maximum score.

Mines positioning on normal start During the normal start, the attackers
must be as close as possible of the opponent defense area. For that purpose, the
point of fortune is located on the center of the opponent goal. The matrix of
the algorithm can be visualized with a heat map, thus, a game situation can be
seen in Figure 6, the ally robots are represented by a black circle, opponents are
represented by a white circle and the robot whose destination is being calculated
by the algorithm is being represented by a black square. The points with higher
scores are more green, while the points with lower scores are more red and the
points with medium score are yellow, the location of the mines are represented
by dots.

Fig. 6. Mines position during normal start - Situation 1.

In Figure 6, it can be seen that one mine was added on the position of
each ally and opponent robots, that way, the attacker will get into a position
as distant as possible from them. Mines are added on the destination of the
ally robots as well, to avoid that the algorithm sets the same destination to two
different robots. In the situation shown in Figure 6, the destiny of the robot
would be on the center of the most green area. Other scenarios are shown in
Figures 7 and 8.

Mines positioning during opponent ball placement During the ball place-
ment of the opposite team, our robots must be keep a distance from the line
between the designed position and the current ball position in order to respect
the game rules. Besides, it is preferable that our robots stay close to our defense
area, since the ball placement will most likely be proceeded with a free kick for
the opponent team, hence, our robots must be prepared to defend.



Fig. 7. Normal start - Situation 2. Fig. 8. Normal start - Situation 3.

For that purpose, the Mines positioning algorithm was used with no fortune
points and 5 to 10 mines on the line that begins on the current ball position and
ends on its designated position, and, one mine on each ally robot. Beyond that,
points that are far from the defended goal are not considered.

That way, the robots tend to avoid the ball placement area and stay on the
defense area, far from each other, as it can be seen on the different scenarios
shown in Figures 9, 10 and 11.

Fig. 9. Defensive ball placement.
Fig. 10. Blue team with mines po-
sitioning on yellow ball placement.

Fig. 11. Blue team with mines positioning on yellow ball placement.



3 Acknowledgements

We would like to thank, in advance, the Small Size League Committee, for the
consideration of our material. We would also like to immensely thank the staff
of Centro Universitário FEI, for all the help we always received from them.

References

1. RoboCup. Hall of fame. https://ssl.robocup.org/hall-of-fame/, 2021. [Online;
accessed 23-Jan-2022].

2. RoboFEI-SSL. Robofei - small size league - gitlab. https://gitlab.com/robofei/
ssl, 2021. [Online; accessed 23-Jan-2022].

3. Wikipedia contributors. Decision tree. https://en.wikipedia.org/wiki/

Decision_tree, 2021. [Online; accessed 29-July-2021].
4. github/Bollos00. Bollos00 - databaseforkicksandpassesrobocup - github. https:

//github.com/Bollos00/DatabaseForKicksAndPassesRobocup, 2020. [Online; ac-
cessed 23-Jan-2022].

5. Andriy Burkov. The hundred-page machine learning book, volume 1. Andriy Burkov
Canada, 2019.

6. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

7. Wikipedia contributors. Adaboost. https://en.wikipedia.org/wiki/AdaBoost,
2021. [Online; accessed 29-July-2021].

8. Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – seamless oper-
ability between c++11 and python, 2017. https://github.com/pybind/pybind11.


