
URoboRus 2022 Team Description Paper

Petr Konovalov, Mikhail Lipkovich, Tseren Frantsuzov, Alexandr
Meshcheryakov, Yury Glazov, Boris Viktorov, Andrey Sviridov, Alexander

Fradkov, and Voloshina Anastasiia

Saint Petersburg State University, Saint Petersburg, Russian Federation
petrkon98@gmail.com

Abstract. In our TDP 2022 a brief description of new software for com-
munication and control design is given. The software includes a new ver-
sion of LARCmaCS - the program uniting SSL Vision and Referee pack-
ages and decoupling the low level code dedicated to dealing with UDP
connections and packages parsing for the control design. A new version
of LARCmaCS includes a new component - ’strategy-bridge’ supporting
calculation of control signals for robots. An additional facility is devel-
oped allowing MATLAB programs (files) to have more than one function
in one file which is not possible in a standard version of MATLAB envi-
ronment. New filtering algorithms are proposed and evaluated. Two new
speed control algorithms are described and compared.
Keywords: RoboCup, robotics, multi-agent system, MATLAB, filter-
ing, control.

1 Introduction

The core of our team consists of students of the Department of Theoretical
Cybernetics of St. Petersburg State University and students of the Presidential
Physics and Mathematics Lyceum No. 239. We work together with engineers
who have developed robots and maintain them in working order. We started
creating our solution in September 2018. By the end of January 2019, the team
had qualified for Robocup 2019. In 2020, we also qualified, and in June 2021, we
took part in the RoboCup SSL virtual competitions. Also in October 2021 we
took part in the RoboCup Brazil Open.

Our goal is also the development of new solutions for educational robotics
available to secondary schools, high schools and universities. Some of the ideas
described in this TDP can be used to achieve this goal.

2 Control Software

In this section the brief description of the software responsible for control design
will be given. The software consists of the following three components:

– LARCmaCS 1

1 LARCmaCS repository, https://github.com/petr-konovalov/LARCmaCS

https://github.com/petr-konovalov/LARCmaCS


2 P. Konovalov et al.

• Gathers SSL Vision and Referee packages [1] and forwards it to strategy-
bridge

• Provides a basic visualization of the field
• Passes control commands from strategy-bridge to the robots

– strategy-bridge 2

• Holds the game state
• Runs asynchronous worker tasks to calculate control signals for robots
• Passes heavy calculations to MATLAB scripts

– MATLAB scripts 3

• Set of stateless MATLAB 4 scripts which perform heavy calculations

The diagram of these components can be seen in Fig. 1.

Fig. 1: Diagram of the base software components

The goal of this split is to decouple the low level code dedicated to deal-
ing with UDP connections and packages parsing from the control design. More
details about each of the components is given below:

2.1 LARCmaCS

This component is developed in C++ using the Qt framework 5. C++ language is
well suited for handling low-level UDP interactions with SSL Server and robots.

2 Strategy bridge repository, https://github.com/mlipkovich/strategy-bridge
3 MATLAB scripts repository, https://github.com/petr-konovalov/MLscripts
4 MATLAB, official webpage, https://www.mathworks.com/products/MATLAB.html
5 Qt, official webpage, https://www.qt.io

https://github.com/mlipkovich/strategy-bridge
https://github.com/petr-konovalov/MLscripts
https://www.mathworks.com/products/MATLAB.html
https://www.qt.io


URoboRus 2022 Team Description Paper 3

Detailed description of LARCmaCS was given in the last year’s TDP [2]. The
previous version of LARCmaCS was communicating with MATLAB scripts di-
rectly through setting MATLAB variables. Each new SSL package is triggering
these variables update. Due to that MATLAB scripts developers were not able
to control the main execution loop of their scripts and had to use global vari-
ables to hold the game state. This approach was error-prone, was not flexible
enough and often required changes in C++ code when MATLAB scripts logic
was updated.

This year the communication between LARCmaCS and MATLAB scripts
was decoupled by introducing a new component strategy-bridge which gets data
from LARCmaCS and uses MATLAB as a library for heavy computations. LAR-
CmaCS publishes SSL packages to ZeroMQ6 topic using libzmqp library7. The
strategy-bridge consumes these packages and calculates robots’ control signals
which are published to another ZeroMQ topic. LARCmaCS forwards control sig-
nals from this topic to robots. Therefore LARCmaCS component becomes static
and does not need any changes unless communication protocols between SSL
Server or robots change.

2.2 strategy-bridge

This component is developed by using Python language for its relative ease of
use and for its rich set of libraries. The goal of the component is to calculate
control signals for robots. The main abstraction of strategy-bridge is a Processor
— the single unit which runs in an infinite loop. All the data that should be
shared between different processors through the in-memory structure called Data
Bus. Processors may need to use MATLAB scripts for heavy computations.
Interaction with these scripts is implemented through MATLAB Engine module.
Resulting control signals are published into ZeroMQ topic using pyzmq library8

for latter consumption by LARCmaCS.
Processor This is the main abstraction for a task which runs asynchronously

in an infinite loop using asyncio9. Everything that is running in strategy-bridge
should be implemented through this interface. There is a processor which con-
sumes SSL data and processor which publishes resulting control signals. Other
processors are dedicated to data preprocessing and control signals calculation.
User configures the rate at which particular task is running. Each task may con-
sume data that was produced by other tasks and share its own results. Task may
optionally run MATLAB scripts by means of MATLAB Engine.

Data Bus This is an in-memory structure that holds the shared state. Data
is split into topics where each topic is a bounded queue. One can configure the
size of each particular topic. After topic reaches its size limits older values are

6 ZeroMQ, official webpage, https://zeromq.org/
7 libzmqpp library, official repository, https://github.com/zeromq/zmqpp
8 pyzmq library, official webpage, https://pyzmq.readthedocs.io/en/latest/
9 asyncio library, official webpage, https://docs.python.org/3.9/library/

asyncio.html

https://zeromq.org/
https://github.com/zeromq/zmqpp
https://pyzmq.readthedocs.io/en/latest/
https://docs.python.org/3.9/library/asyncio.html
https://docs.python.org/3.9/library/asyncio.html


4 P. Konovalov et al.

evicted. Each processor is able to write into one or several topics. Processors are
allowed to read records from topics that do not belong to them.

MATLAB Engine The task of this module is to run MATLAB scripts.
Interaction with MATLAB is implemented through MATLAB Engine API for
Python10. MATLAB Engine runs MATLAB in asynchronous fashion therefore
it does not block the task which triggered the script execution.

2.3 MATLAB scripts library

MATLAB scripts are run through Processors from strategy-bridge. Currently
MATLAB contains most of the strategy business-logic besides computations.
Future work will be dedicated to migrating this logic to strategy-bridge so that
MATLAB will be used as a computational tool only.

Control signals are calculated using algorithms presented in section Algorith-
mic part.

3 MATLAB issues

Unfortunately, MATLAB, being ”a programming and numeric computing plat-
form used by millions of engineers and scientists to analyze data, develop al-
gorithms, and create models”, was not specifically designed for our needs. This
makes some of the things we need it to do difficult.

3.1 Namespaces

MATLAB has a single global ”workspace” by default, in which it loads all the
visible symbols. Making modules to separate names, although possible, requires
clearing the workspace on every change, which slows down development consid-
erably. The environment processes classes separately and requires rebuilding to
apply changes, which is also slow.

Additionally, it‘s impossible to load more than one function from a single file
directly; so, when there is a need to make a lot of them e. g. for a geometry library,
large heaps of small files appear. It is also impossible to separate declarations
from definitions, at least directly.

We had to make use of a workaround in the form of function references. A
source file contains a function to pack its contents into a reference array:

geometry src.m

function ref_array=geometry_src()

ref_array={...

@get_angle, ...

@rotate_2d,...

10 MATLAB Engine API for Python, official webpage, https://ch.mathworks.com/
help/MATLAB/MATLAB_external/install-the-MATLAB-engine-for-python.html

https://ch.mathworks.com/help/MATLAB/MATLAB_external/install-the-MATLAB-engine-for-python.html
https://ch.mathworks.com/help/MATLAB/MATLAB_external/install-the-MATLAB-engine-for-python.html


URoboRus 2022 Team Description Paper 5

@select_closest_point,...

@to_cartesian...

%more symbols to output...

};

end

%definitions...

Then a header file unloads its contents back:

geometry header.m

ref_array=geometry_src();

get_angle=ref_array{1};

rotate_2d=ref_array{2};

select_closest_point=ref_array{3};

to_cartesian=ref_array{4};

%more symbols to unpack...

3.2 Performance

Mainly running on an interpreter, MATLAB definitely has a heavy overhead
compared to native, compiled languages such as C++. Although not a concern
as for now, this may be a problem when the code base grows larger.

4 MATLAB advantages

The first and obvious advantage is the mathematic expressivity: built-in sup-
port for vector algebra, operations on matrices and geometry support speed up
development significantly, saving us from the need to make them ourselves.

Another advantage is MATLAB‘s light type system: not needing to worry
about type conversions and good builtin array support are a great help when
designing code.

One more thing is the ability to plot values of interest quickly and effortlessly.
This allows us to debug code faster.

4.1 Summary

MATLAB is not the perfect tool for our needs; although powerful, it makes
for a poor experience when organizing large projects. We had to make use of a
workaround to export multiple function identifiers from a single file.

5 Algorithmic part

5.1 Filtering of object position

The SSL Vision [1] recognition system is used at RoboCup competitions to
recognize the coordinates of robots and the ball on the field. Often it sends these



6 P. Konovalov et al.

coordinates with some uncertainty. Therefore, many teams eventually came up
with the idea of filtering the data received from SSL Vision [3], [4], [5], and our
team is not an exception. The most popular filtering method among RoboCup
SSL teams is the Kalman filter [6]. Its modifications judging by the TDP of
experienced teams have been successfully used in competitions for many years
[7], [8], [9].

However the Kalman filter has a few drawbacks:

1. It is labour intensive in terms of implementation
2. In some cases, which we will consider further, its actions are redundant

Let’s take a closer look at the first item. Firstly, our team uses MATLAB
for description of robot control algorithms while many other teams, especially
more experienced ones, prefer other languages, as seen in their GitHub [10], [11],
[12]. Secondly, it is worth noting that MATLAB has an implementation of the
Kalman Filter encapsulating only the logic of calculations of known formulas.
The main difficulty arising from this lies in design of a mathematical model of
the system. Thirdly, it is well known (and many teams note) that the Kalman
Filter does not work properly with strongly nonlinear system behavior, when an
object abruptly changes its direction of motion. A typical case is predictiong the
motion of the ball bouncing off another robot.

Let’s take a closer look at the second statement. If the filter is used for
estimation of the positions of stationary objects then there is no need to calculate
the velocity. Consequently, the Kalman Filter does an excessive action at the
prediction stage, since it calculates the speed.

Before proceeding to the description of our method, two comments are due:

1. Sometimes SSL Vision determines false objects and leads to data outliers.
For example, it can estimate the ball position at the top of some robot.

2. There is always a random error in the measurement.

Our approach to filtering can be divided into two stages. At the first stage,
the median filter [13] is used to discard outliers in the data in order to solve
problem 1. Then, at stage 2, our filter reduces the variance of the random error.
This is achieved by weighted averaging of the data obtained at the current step
from the median filter and the filtering results obtained at the previous step.

The Fig. 2 shows an example of how the filter works. The green line shows
the measured value, the red dots correspond to the measurement results, the
purple line is the result of the median filter, and the red solid line is the final
result of the filter. The following conclusions can be made from the picture:

1. Median filter removes outliers as expected.
2. The variance of the error decreases when averaging is applied.

Note that the probability of the outliers appearance is rather high (about
0.2). The median filter window size is 5, weights for weighted arithmetic mean



URoboRus 2022 Team Description Paper 7

Fig. 2: Generated data filtering example

are 0.05 and 0.95 for current step median filter measurement and previous step
filter result respectively.

The presented approach to filtering was successfully applied by our team
at RoboCup 2021 (it was not described in our previous TDP since its final
version was tested after TDP submission). It has demonstrated reasonably good
performance.

5.2 Two approaches to speed control

We have created two algorithms for speed control. Each of them has its advan-
tages and disadvantages. The reason why we need two different algorithms is in
that we worked with two generations of robots. The old (1st generation) robots
were not made high precision and drove at different speeds. This is expressed in
different times of overcoming the same distance with the same values of speed
parameters. For such robots, it was necessary to create special software functions
that would synchronize the work of all robots and their characteristics. There
is no such problem for the second generation. New robots move at the same
real speed, and such software settings are no longer needed. Thus, we have two
algorithms, because one of them is necessary for the first generation of robots,
and for the new one it is simply redundant.

Algorithm 1. Robot moves from point A to point B along a straight line.
Denote by x(t) the distance of the robot from the point A at time t. The following
restrictions are imposed:

|ẍ(t)| < w – acceleration limitation

|ẋ(t)| < v – speed limitation
(1)



8 P. Konovalov et al.

We assume that the constants w and v are known to the controller designer. Then
it will be optimal for robot to accelerate as long as possible, afterwards go with
full speed and in the end slowing down as fast as possible. In this way absolute
speed graph looks like trapezoid. Denote by x∗(t) the function describing such
movement. Apparently, it is a function, for which we may choose parameter
values Tw < Tv < T necessary to describe the following relations:

ẍ∗(t) = w for t ∈ [0, Tw] – constant acceleration segment

ẋ(t) = v for t ∈ [Tw, Tv] – constant speed segment

ẍ∗(t) = −w for t ∈ [Tv, T ] – constant deceleration segment

ẋ∗(t) = 0 for t > T

Denote the control function by u(t). Then the model is described by the
following equation

ẋ(t) = C · u, (2)

where C is an unknown constant that may be different for different robots in
the team. Integrating (2) we obtain the following equation:

C =
x(t)− x(0)∫ t

0
u(τ) dτ

.

This equation provides a good estimate of C even if there is an error in the
measurement of x(t), since the denominator increases with time. Thus, it is
possible to restore the constant C, and the greater the distance the robot will
travel, the more accurate the estimate will be.

Then one can calculate the control as follows:

u(t) =
ẋ∗(t) +K · (x∗(t)− x(t))

C
, (3)

where K is a parameter that is selected manually and function x∗(t) specifies
the desired robot movement. Note that the difference x∗(t)−x(t) shows how far
the robot is behind the schedule.

Algorithm 2. Let the robot move from point A to point B. Then from the
basic kinematic one can derive the following relation:

V =
√

2aS. (4)

where a is the robot constant acceleration, which is set manually, S is the distance
to the goal point at a given time. Next, using the velocity V ∗ obtained during
the last step, we change the acceleration to arrive at the velocity V . Like in the
first algorithm, the same restrictionsn (1) are imposed.

Choosing the best algorithm. The algorithms were tested both on the
simulator and on physical robots of both generations. Old robots move at dif-
ferent speeds when applying the same control value u under the same location
conditions. The new type of robots ensure that different robots will move the



URoboRus 2022 Team Description Paper 9

same way when applying the same control value u under the same location con-
ditions. The use of the first algorithm is more preferable for robots of the old
generation, because they all strive for the ”ideal” speed. While using the second
algorithm, the features of their movement are preserved. When applied to new
robots, there was no particular difference between the two algorithms, as well as
when testing on a simulator.

At the first glance, we may conclude that the first algorithm is better and it
is worth using. However this is not the case due to the following reasons:

1. The second algorithm is just much simpler.
2. In the first algorithm it is necessary to store data about the system behavior

for quite a long time and take into account many conditions in order to reset
the data at the right time. In the second algorithm it is necessary to store
data only from the last step.

3. In the first algorithm everything is based on the use of a proportional regu-
lator, which always has a nonvanishing error.

Thus, the second algorithm is simpler, and it does not break, which is why
we chose it.

6 Mechanics and electronics

Our mechanic and electronic design can be found in our previous TDP [2].

7 Conclusions

This TDP provides a brief description of new software for RoboCup SSL robots.
First, a new version of LARCmaCS - the software uniting SSL Vision and Referee
packages is described. It includes a new component - strategy-bridge support-
ing calculation of control signals for robots. An additional facility provided in
our new software enables MATLAB programs (files) to contain more than one
function in one file which is not possible in a standard version of MATLAB
environment. The basic version of the library of functions includes the library
of geometric operations. New filtering algorithms are proposed and evaluated.
Finally, two new speed control algorithms are described and compared.

In the future it is planned to expand the library with such functions as
avoiding obstacles, choosing a point for attacking the goal, an algorithm for
distributing targets between robots, a goalkeeper algorithm, etc.

References

1. SSL Vision system, official repository, https://github.com/RoboCup-SSL/

ssl-vision

https://github.com/RoboCup-SSL/ssl-vision
https://github.com/RoboCup-SSL/ssl-vision


10 P. Konovalov et al.

2. Petr Konovalov, Dmitry Korolev, Dmitry Kapustin, Galina Reneva, Anastasiia
Voloshina, Alexander Kalitin, and Alexander Fradkov, URoboRus 2020 Team De-
scription Paper, https://ssl.robocup.org/wp-content/uploads/2020/03/2020_

TDP_RoboRus.pdf

3. Prof. Dr. Rahib H. ABIYEV, Dr. Pavel MAKAROV, Ahmet CAGMAN, Ersin AY-
TAC, Gokhan BURGE, Ali TURK, Nurullah AKKAYA, Tolga YIRTICI, Gorkem
SAY, Berk YILMAZ, NEUIslanders Team Description Paper RoboCup 2019, https:
//ssl.robocup.org/wp-content/uploads/2019/03/2019_TDP_NEUIslanders.pdf

4. J. Almagro, C. Avidano, C. Lindbeck, J. Neiger, Z. Olkin, E. Peterson, K. Sta-
chowicz, W. Stuckey, M. White, M. Woodward, G. P. Burdell, RoboJackets 2019
Team Description Paper, https://ssl.robocup.org/wp-content/uploads/2019/

03/2019_TDP_RoboJackets.pdf

5. Tom´as Rodenas, Ricardo Alfaro, Pablo Reyes, Felipe Pinto, Maximiliano Aubel,
Nicol´as Hern´andez, Pablo Yanez, Tania Barrera, Daniel Torres, Jorge Alvarez,
Dami´an Quiroz, Rub´en Gonz´alez, Sysmic Robotics 2019 Team Description Pa-
per ,https://ssl.robocup.org/wp-content/uploads/2019/03/2019_TDP_Sysmic_
Robotics.pdf

6. Kalman Filter description: https://en.wikipedia.org/wiki/Kalman_filter
7. Andre Ryll, Nicolai Ommer, Daniel Andres, Dirk Klostermann, Sebastian Nickel,

Felix Pistorius, TIGERS Mannheim Team Description for RoboCup 2013 https://

ssl.robocup.org/wp-content/uploads/2019/01/2013_TDP_TIGERs_Mannheim.pdf

8. Joydeep Biswas, Juan Pablo Mendoza, Danny Zhu, Phillip A. Etling, Steven
Klee, Benjamin Choi, Michael Licitra, and Manuela Veloso, CMDragons 2013
Team Description https://ssl.robocup.org/wp-content/uploads/2019/01/2013_

TDP_CMDragons.pdf

9. Kotaro Yasui, Yuji Nunome, Shinya Matsuoka, Yusuke Adachi, Kengo Atomi,
Masahide Ito, Kunikazu Kobayashi, Kazuhito Murakami and Tadashi Naruse, Robo-
Dragons 2013 Team Description https://ssl.robocup.org/wp-content/uploads/

2019/01/2013_TDP_RoboDragons.pdf

10. TIGERs Mannheim github: https://github.com/TIGERs-Mannheim
11. ZJUNlict github: https://github.com/ZJUNlict
12. RoboDragons github: https://github.com/RoboDragons
13. Median Filter description: https://en.wikipedia.org/wiki/Median_filter

https://ssl.robocup.org/wp-content/uploads/2020/03/2020_TDP_RoboRus.pdf
https://ssl.robocup.org/wp-content/uploads/2020/03/2020_TDP_RoboRus.pdf
https://ssl.robocup.org/wp-content/uploads/2019/03/2019_TDP_NEUIslanders.pdf
https://ssl.robocup.org/wp-content/uploads/2019/03/2019_TDP_NEUIslanders.pdf
https://ssl.robocup.org/wp-content/uploads/2019/03/2019_TDP_RoboJackets.pdf
https://ssl.robocup.org/wp-content/uploads/2019/03/2019_TDP_RoboJackets.pdf
https://ssl.robocup.org/wp-content/uploads/2019/03/2019_TDP_Sysmic_Robotics.pdf
https://ssl.robocup.org/wp-content/uploads/2019/03/2019_TDP_Sysmic_Robotics.pdf
https://en.wikipedia.org/wiki/Kalman_filter
https://ssl.robocup.org/wp-content/uploads/2019/01/2013_TDP_TIGERs_Mannheim.pdf
https://ssl.robocup.org/wp-content/uploads/2019/01/2013_TDP_TIGERs_Mannheim.pdf
https://ssl.robocup.org/wp-content/uploads/2019/01/2013_TDP_CMDragons.pdf
https://ssl.robocup.org/wp-content/uploads/2019/01/2013_TDP_CMDragons.pdf
https://ssl.robocup.org/wp-content/uploads/2019/01/2013_TDP_RoboDragons.pdf
https://ssl.robocup.org/wp-content/uploads/2019/01/2013_TDP_RoboDragons.pdf
https://github.com/TIGERs-Mannheim
https://github.com/ZJUNlict
https://github.com/RoboDragons
https://en.wikipedia.org/wiki/Median_filter

	URoboRus 2022 Team Description Paper

