
RobôCIn Extended Team Description Paper for
RoboCup 2023

Aline Oliveira, Cauê Gomes, Cećılia Silva, Charles Alves, Danilo Souza, Driele
Xavier, Edgleyson Silva, Felipe Martins, Lucas Cavalcanti, Lucas Maciel,

Matheus Paixão, Matheus Vasconcelos, Matheus Vińıcius, João G. Melo, João
P. Moura, José R. Silva, José V. Cruz, Pedro H. Santana, Pedro P. Oliveira,

Riei Rodrigues, Roberto Fernandes, Ryan Morais, Tamara Teobaldo,
Washington Silva, and Edna Barros

Centro de Informática, Universidade Federal de Pernambuco.
Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife - Pernambuco, Brazil.

robocin@cin.ufpe.br

https://robocin.com.br/

Abstract. RobôCIn has participated in RoboCup Small Size League
since 2019, won its first world title in 2022 (Division B), and is cur-
rently a three-times Latin-American champion. This paper presents our
improvements to defend the Small Size League (SSL) division B title in
RoboCup 2023 in Bordeaux, France. This paper aims to share some of
the academic research that our team developed over the past year. Our
team has successfully published 2 articles related to SSL at two high-
impact conferences: the 25th RoboCup International Symposium and the
19th IEEE Latin American Robotics Symposium (LARS 2022). Over the
last year, we have been continuously migrating from our past codebase
to Unification. We will describe the new architecture implemented and
some points of software and AI refactoring. In addition, we discuss the
process of integrating machined components into the mechanical system,
our development for participating in the vision blackout challenge last
year and what we are preparing for this year.

Keywords: RobôCIn · RoboCup 2023 · Robotics · Small Size League

1 Hardware

The hardware updates for this year aim at more a reliable motion control, by
improving our mechanics project. We have added a brass thread to our alu-
minium drive transmission support, preventing it from wearing out due to the
shaft’s friction. Besides the hardware adaptations for the Vision Blackout chal-
lenge, which are detailed in Subsection 2.1, our electronics project has remained
unchanged, and general hardware specifications can be found in Table 1, with
no changes from the 2020 version.



2 RobôCIn Extended Team Description Paper for RoboCup 2023

Table 1. Robot Specifications

Robot Version v2022

Driving motors Maxon EC-45 flat - 50W

Max % ball coverage 19.55%

Microcontroller STM32F767ZI

Gear Transmission 18 : 60

Gear Type External Spur

Wheel 3D Printed

Total Weight 2.53 kg

Dribbling motor Maxon EC-max 22, 25W

Encoder MILE 1024 CPT

Dribbling Gear 50 : 30

Dribbling bar diameter 14mm

Max. kick speed 6.5m/s

Communication Link nRF24L01+

Battery LiPo 2200mah 4S 35C

1.1 Drive Transmission Support

To achieve our goal of competing in Division A in the following years, we need
to improve our Drive set to minimize the risks on the robot’s movement and
make the transmission system smoother, by adding an machined aluminium drive
transmission support (Figure 1a) to ensure the transmission gears’ tolerance.
During the competition, some of the Drive sets presented looseness on the wheel
shaft, and we partially solved the problem with Tekbond 793.

After the competition, we conducted a material analysis to find the root
of this problem. One of the reasons for the gap was that the hardness of our
stainless steel wheel shaft was much higher than the hardness of the aluminium
drive transmission support. Thus, the forces applied to this structure caused our
drive transmission support to wear out.

One solution found to reduce wear in this part was adding a brass thread
(Figure 1b), which has a greater hardness than the aluminium from the previous
model, equalizing the contact forces.

We also had problems with tolerance when modifying the drive transmis-
sion support to add the brass thread. Figure 2 shows the consequences of this
inaccuracy in the hole, causing backslash problems for the gearing.

These problems were solved by fabricating new pieces of the drive transmis-
sion supports in partnership with the Departamento de F́ısica (DF), which sup-
ported us with high-precision machines, guaranteeing reliability for our robots.



RobôCIn Extended Team Description Paper for RoboCup 2023 3

(a) (b)

Fig. 1. (a) Old Drive Transmission Support; (b) New Drive Transmission Support;

Fig. 2. Uncentric Brass inserted thread

2 Vision Blackout Challenge

For participating in the Vision Blackout Challenge, hardware adaptations were
made, new low-level navigation methods were implemented and a complete soft-
ware infrastructure was built for allowing our robots to execute SSL soccer skills
autonomously. Our goal was to create a robust enough infrastructure to im-
plement each robot skills by only creating new Finite State Machines (FSM),
all using onboard modules for sensing and processing. With this architecture,
we were able to complete 2 of the 4 stages of the challenge in 2022’s compe-
tition, achieving 2nd place. Also, we shared details of our research on recent
papers [6, 11,12] and open-source project datasets and documentation12.

2.1 Hardware Adaptations

Following past approaches in the League, we have added an onboard camera
and a compute module for vision processing and decision-making. A Logitech

1 https://github.com/bebetocf/ssl-dataset
2 https://github.com/jgocm/ssl-detector



4 RobôCIn Extended Team Description Paper for RoboCup 2023

C922 webcam was chosen due to its low-distortion parameters, allowing for easy
camera calibration with high precision. As for additional computation, a 4GB
NVIDIA Jetson Nano Developer Kit was chosen due to its small size, low power
consumption, high throughput on DNN and image processing, and extensive
documentation for NVIDIA libraries. Also, its System-on-Module (SoM) archi-
tecture leaves room for future improvements, by adapting our electronics to
connect the module directly to our mainboard, for instance, saving even more
space.

Besides the Jetson Nano and the Logitech camera, we have also added a
power supply module, using 4 cells of 18650 batteries, for powering this new
subsystem. A new cover plate, which we call the robot’s third floor, was designed
for mounting those parts onto the robot and it is shown in Figure 3. It also has
housings for additional standoffs, enabling us to place a SSL tag on the robot’s
top, which is useful for experiments and evaluation.

(a) Third floor with Jetson Nano, power supply
module and onboard camera.

(b) Vision blackout robot
assembled

Fig. 3. Robot hardware adaptations for vision blackout challenge

2.2 Software Workflow

The autonomous SSL robot is mainly operated by two processing modules: the
Jetson Nano and the STM32F746ZI, an ARM Cortex-M7 Microcontroller Unit
(MCU), also referred to as STM32F7 for simplicity. They communicate through
an Ethernet cable using User Datagram Protocol (UDP) Socket packets.

For embedded vision, we use a Logitech C922 camera with 30 frames per sec-
ond capture rate using 640x480 pixels of resolution. Vision frames are processed
by the Jetson Nano running a CNN-based Object Detection model, namely SS-
DLite MobileNetv2 [9,19], for detecting SSL objects’ bounding boxes, which are



RobôCIn Extended Team Description Paper for RoboCup 2023 5

used for estimating their relative positions to the robot by using pre-calibrated
intrinsic and extrinsic camera parameters, as presented in [11]. The paper also
shares details of model retraining and deployment using TensorRT optimizations.

Decision-making is also implemented on the Jetson Nano, which runs Finite
State Machines (FSMs) that implement each of the robot’s autonomous skills
for solving Vision Blackout challenge stages. Objects’ relative positions are used
as inputs and the FSM computes a target position and orientation, a navigation
type, and command flags such as odometry resetting, capacitor charging, and
kicking. This information is encoded into a protobuf message and sent to the
MCU through the UDP connection.

At the MCU level, for our Target-Point-based navigation, we implement three
movement types: Rotate-on-Self (RoS), Drive-to-Point (DtP), and Rotate-in-
Point (RiP). The first accounts for rotations around the robot’s axis, mainly
used for initial ball searching and self-alignment with targets. DtP implements
a linear movement with orientation correction, adjusting the robot’s translation
velocity according to its rotation error and distance to the target. Lastly, RiP
executes a circular trajectory around a point, allowing the robot to search for a
goal while looking at the ball, for instance.

The MCU also calculates the robot’s inertial odometry by computing inverse
kinematics from encoder readings, and the trajectory is estimated using gyro-
scope measurements combined with odometry, allowing it to adjust its path while
embedded vision information is not available. Figure 4 illustrates an overview of
the proposed architecture, and we present more details in [12].

ROBOT

OBJECTS
DETECTION

RELATIVE
POSITIONS

TARGET
POINT

ENCODER +
IMU READINGS

INERTIAL
ODOMETRY

UDP SOCKET

UPDATE TARGET
& RESET

ODOMETRY

ROBOT MOVEMENT

NAVIGATIONYES

NO

NEW UDP
PACKET?

UPDATE
ROBOT

POSITION

MOTION
CONTROL

JE
TS

O
N

 N
AN

O
ST

M
32

F7

FINITE STATE
MACHINE

OBJECTS AS
GROUND POINTS

Fig. 4. Overview of the proposed logic diagram in order to build an autonomous
RoboCup Small Size League Robot. All the modules are inside the robot, the up-
per modules run on the Jetson Nano, while the lower ones run on the STM32F7 MCU.
Finite State Machines are defined for implementing soccer skills.



6 RobôCIn Extended Team Description Paper for RoboCup 2023

2.3 Robot Skills

This architecture was employed to solve the 4 stages of Vision Blackout challenge
2022. However only stages 1 and 2 were fully completed during the competition,
showing our solutions were still not robust enough and highlighting many diffi-
culties and necessary improvements, which we discuss in the next subsection.

In more recent experiments [12], for evaluating our system’s capabilities and
weaknesses, we have executed multiple tries on different scenarios of three com-
mon SSL tasks: grabbing a ball (I), scoring on an empty goal (II), and passing
the ball (III). The same rules and scoring criteria as the 2022 Vision Blackout
challenge [15] were applied in the tasks, except for passing the ball, which ex-
cludes scores from the kicker robot from the challenge’s stage 4. Also, we consider
that the robot has succeeded in the task if conditions for all positive scores are
satisfied.

Table 2 shares an overview of the experiments’ overall results from [12],
showing that the robot was able to stop with the ball touching its dribbler and
score a goal in 80% of the attempts on tasks 1 and 2. As for the third task, the
ball hit the receiver robot’s dribbler on 46.7% of the 15 attempts, although the
robot was hit in 80% of them.

Table 2. Autonomous SSL Robot’s Overall Performances on Proposed Tasks

Metrics Task I Task II Task III

Min Time (s) 6.09 11.89 9.82

Max Time (s) 10.27 60.00 20.00

Mean Time (s) 7.70 19.01 14.21

Success Rate 12/15 12/15 7/15

Total Score 40/45 54/60 47/60

Penalties - 8 3

2.4 Major Issues and Ongoing Improvements

Issues from RoboCup One major difficulty we faced at the 2022 Vision Black-
out challenge was to detect the ball at high distances, since our object detection
approach was only capable of detecting it for up to 5 meters, which led us to
failures at 2 of the 3 tries on stages 1 and 2. Also, our self-localization methods
were not robust enough for solving stage 3, resulting in low scores and long ex-
ecution times. As for stage 4, even though the passer robot was able to detect
the ball, the kicker one could not move due to communication issues, leading to
3 failures.

Issues from Evaluation Experiments During experiments from [12], which
results are reported in Table 2, analysis from embedded vision logs have shown



RobôCIn Extended Team Description Paper for RoboCup 2023 7

that most failures were caused by false positive detections from objects outside
the field, highlighting the importance of discarding out-of-field information. Also,
many penalties were caused due to the robot’s inability of detecting field lines,
and ball searching was the most time-consuming part of the tasks.

Ongoing Improvements For discarding out-of-field information, we have been
developing field boundary detection solutions, which also enable more complex
exploration strategies for objects’ searching, as we can avoid leaving the field,
being also a useful feature for overcoming our major issue from RoboCup: not
finding the ball.

Introducing a self-localization solution for SSL robots is also a necessary im-
provement. It enables planning more efficient paths and avoiding penalties, such
as entering the defender’s area. In addition, objects’ searching, which was shown
to be the most time-consuming part of the tasks, could be optimized using local-
ization knowledge for more efficient field exploration. Thus, we are working on a
Monte Carlo Localization (MCL) algorithm that fuses our inertial odometry ap-
proach with vision information from detected goals and field boundaries relative
positions for regressing the robot’s pose over time, based on typical approaches
from other RoboCup leagues [8, 18].

3 Software

After the team’s first participation in RoboCup, in 2019, it was decided to con-
centrate a good part of the efforts on building a similar codebase that could be
reused by other RobôCIn’s soccer modalities, other than SSL: Simulation 2D [16]
, IEEE Very Small Size Soccer [7]. With the absence of in-person competitions
in 2020 and 2021 due to the pandemic, we focused our efforts on improving the
software codebase, which we mentioned in the 2022 TDP [20].

One of the main existing problems occurred due to the logic replication and
the low interchangeability of developers between categories, even working with
the same programming language, C++. Also, with the expansion of SSL-Coach
functionalities, the authorial software described in the TDP of 2019 [21], the
accumulation of technical debts in the architecture and development infrastruc-
ture made it difficult to make improvements, for example, the creation of more
elaborate and collaborative plays among the robots.

SSL-Coach is our first stable software version developed for the category,
which has a modular architecture, inspired by STP (Skill, Tactics, and Plays) [2].
Due to the variety of demands and a short development period, the information
processing steps of this software are characterized by being tightly coupled and
difficult to enlarge, which makes it difficult to add new information flows, and
requires changes to code snippets not necessarily related to the intended change.
Therefore, it was necessary to reduce the complexity of the software to reduce
execution errors, that led to points of failure in the initial software architecture.
Also, it has been noted as difficult to integrate new team members, transfer
knowledge, and renew the team using the existing architecture.



8 RobôCIn Extended Team Description Paper for RoboCup 2023

With a survey of the main technical debts to be solved within RoboCIn’s cat-
egories, a more flexible and modern architecture was modelled, bringing different
possibilities of expansion and reuse. In this way, soccer-common was developed,
an open-source library, used as a submodule, which aims to concentrate the
common global part of the different team modalities, in addition to providing
a separation between User Interface (UI) and back-end. Soccer-common has as
its main components a library of geometric functions, a graphical interface with
drawing support at any point, debugs, and the design of a module.

A module, in the new architecture, consists of the main abstraction capable
of executing logic in parallel, providing support for communication with the
visualization interface and parameters, and communicating with other modules.
Also, a module can be indexed, that is, for occasions where it is intended to have
multiple identical execution steps, such as the behavior of a robot. Its conception
consists of the main core of our architecture, which we will describe below. From
now on, we will call it Unification, the new development base software, which
replaced SSL-Coach.

3.1 Architecture

The tight coupling of processing in SSL-Coach is due to how its modules were
created and communicate with each other. Each module consists of a thread
that executes a singleton, a static global object with a unique instance at any
point, and the exchange of information between these modules is done through
direct connections by setters and getters, which violates the Single-responsibility
principle (SRP) [10], and consequently makes it difficult to change the existing
execution flow and call tracking performed.

Since the beginning of software development at RobôCIn, we have used the
Qt framework [3]. However, we have hardly explored some of its features, such
as Signals & Slots [4], which consists of implementing the Observer Pattern to
facilitate communication between components of the Framework. Originally, its
use was intended for the communication of objects linked to the UI, avoiding
limitations and complications that parallel processing and the implementation
of callbacks in C++ may imply.

By combining signals and slots with our projected wrapper for safe shared ac-
cess, the communication of our modules was implemented as a cascaded publisher-
consumer system, where emitter functions are connected in the creation of mod-
ules to receivers, confirming each module requirement. As soon as a module
receives the input and it is registered, the information is stored in a critical
region and waits for the next execution to be effectively consumed.

With the new infrastructure, we have also improved the communication be-
tween modules, using more flexible data packages, simplifying modifications
and corrections. Previously, the information we shared consisted of an exten-
sive structure, where all the relevant information to be transmitted was present.
The distinction of its use was under an enumerator’s responsibility. The filling
of this structure was not always fully completed, as not all information was rel-
evant to a specific message, which pollutes and makes it difficult to understand.



RobôCIn Extended Team Description Paper for RoboCup 2023 9

We solved the problem using a variant type, introduced in C++17 [5], which
consists of a type-safe union, capable of aggregating different structures into a
single type, enumerating each one of them. It allows us to direct the processing
of a message through pattern matching, which simplifies the use of previously
needed conditionals.

In this software architecture, the flow of information starts with the vision
system that sends position information. Simultaneously, the referee sends stage
and command updates. The software then receives these inputs and applies fil-
tering processes. The decision module determines the players’ behavior (such
as goalkeeper, forward, defender, and others) according to the received referee
data, making decisions and using the vision data to identify which player should
perform a particular action. The behavior modules then use the decision assign-
ments to execute the intended behavior for each player in separate threads. These
threads produce tactics that are processed by the planning and/or navigation
modules threads in sequence. Finally, the navigation module process necessary
actions for the robots move, with briefed type and parameters. As a result, we
achieved the architecture in Figure 5.

Behavior

Player

xN

VisionClient

ProcessedVision

MergeCams WorldFilter
x1

Navigation

GoToPoint

RotateInPoint

xN

RotateOnSelf

NavigationOutput

Planning

Path-Planning
Solver

NavigationOutput

MotionOutput

GoToPoint

GoToPointPath

xN

Decision

BallPlacmntDecision

FaultDecision

HaltDecision

GameDecision

x1

KickOffDecision

PenaltyDecision

VisionWorldPipeline

RefereeStatusPipeline
Referee

RefereeClient RefereeParser

x1

Fig. 5. Overview of SSL-Unification software architecture detailed dataflow. In purple
is the data with variant groups type.

3.2 Implementation

We seek to reformulate modules introduced in the 2019 TDP according to the
listed technical debts, reducing the number of flags and removing boilerplate
code. We will describe the changes made to our code flow below:



10 RobôCIn Extended Team Description Paper for RoboCup 2023

DataWorld In SSL-Coach, this component was responsible for receiving vi-
sion information obtained from simulators or vision software, performing vision
processing and receiving commands from the referee’s software. We decided to
separate the processing carried out into three modules, each dedicated to one of
the respective activities described above.

For the module dedicated to receiving arbitration software commands, we
have developed our parser3 based on the Stage and Command received, allied
to the analysis of internal flags, information from the vision and the previous
context, aiming at the specialization of game situations, simplifying the strategy
carried out later, so each leaf situation at parser tree output, started to be treated
in isolation.

The complete referee parser tree, shown in Figure 6, starts from the game’s
command and the state received from the external referee. At the Game Action
division, it decides if the robots must halt, or not. Then, the Game Status
transition defines if we are dealing with an in-game situation or a positioning
one, such as a preparation for kick-off. Lastly, at the Planning Game division, the
parser chooses between states whether the robots must move without touching
the ball (Dynamic Formation), execute a predefined play (Planned Tactic), or
play the game normally (Game Tactic).

Trainer With the split of the DataWorld component, and the creation of a
dedicated module to parse the information received from the arbitration soft-
ware, the processed commands allowed a strong restructuring in this module,
where we currently make quick specific changes for opponents depending on the
applied game state.

Over the years we have greatly evolved players’ allocation within the decision
component, the Trainer, formerly called Decision, starting from a static team
with 3 Defenders, 1 Support, and 1 Forward in 2019, to a dynamic allocation
based on the position of the ball and risk offered by the enemies’ positions. In
this way, we are currently able to be an adaptable team, but one that seeks to be
extremely offensive by pressing the game to the enemy half, exchanging passes
until they get an opportunity to shoot on goal.

Our offensive tactics are made up of a Forward, who is the player in possession
or in a direct dispute over the ball, and of a variable number of supporters
according to the position of the opposing team’s robots, where each supporter
seeks to stay in optimal positions, the best within our heuristics to receive a
pass from Forward and perform a successful play. Once the ball is passed to the
supporter, this will become the player in possession or direct dispute for the ball,
switching positions: the supporter receiving the pass will become the Forward,
which keeps the attack cycle performed by our team.

Behavior With Unification, one of the team’s main goals for the old Player
module was to decouple functionalities and simplify state machines. In SSL-
Coach, we had behaviors with finite state machines (FSM) of many states and

3 https://github.com/robocin/soccer-common/wiki/Referee-Parser



RobôCIn Extended Team Description Paper for RoboCup 2023 11

Fig. 6. Complete referee parser tree, showing all possible game states.

with similar logic functions done in several different ways within the behavior
itself, which made it difficult to understand the transitions to debug and make
corrections.

Previously, as described, each state corresponded to an enumerator, and
the state processing nodes, functions, which are incapable of storing contexts,
switched by a large number of conditionals. The input for each processing node
consisted of a pair < state, context >, with the information needed for all exist-
ing states, which made it particularly difficult to distinguish information relating
only to specific states. With the architecture update, some ways to improve the
implementation of an FSM for the desired purposes were also studied. Similar
to the messages used for communication between modules, the machine states
started to consist of a variant, while the processing nodes of these states became
classes. With this change, the state processing nodes now have greater inde-
pendence, with contexts capable of restarting as a transition to a new state is
performed.

Also, in the current architecture, we started to apply the concept of SkillBook
coming from the STP [2], and to define the attacker as a set of tactics that
involve interacting with the ball (be it kicking to goal, giving a pass or take a



12 RobôCIn Extended Team Description Paper for RoboCup 2023

penalty) that was previously all together in a single FSM, making it complex
and disproportionately large to deal with various situations.

In order to facilitate maintenance and future improvements, it was decided
to extract the previously existing Planning and Navigation modules within the
Behavior component, thus enabling the alternation of algorithms used, as we
will explain below.

3.3 Path-Planning

One of the changes made to the architecture was the creation of a dedicated
module for path planning. After that, we became capable of exploring path
optimizations and switching the used algorithm.

This year, we changed our path-planning algorithm and optimized our low-
level control. Until then, we used an evolved version of the visibility graph pre-
sented on the 2019 TDP [21], due to a bunch of changes realized over the years
aimed to optimize and handle corner cases. However, it has become really diffi-
cult to maintain it given the increased code complexity.

Current Problems One of our major issues in past competitions was the high
number of fouls due to crashing and robot distance to forbidden locations, as
shown in Table 3. Due to the yellow cards arising from those fouls, we were fre-
quently forced to play with 5 or 4 players, which reduced massively our offensive
power given the reduced number of players to compose the attack. This analysis
led us to optimizations on the path-planning algorithm, since the majority of
those fouls were avoidable.

Table 3. Collision and invasion detected during matches [22] at RoboCup 2019, 2021
and 2022

Referee foul event Amount

ATTACKER TOO CLOSE TO DEFENSE AREA 22

BOT CRASH UNIQUE 93

DEFENDER TOO CLOSE TO KICK POINT 69

With limitations concerning Visibility Graph’s nature, those related to the
generated path stand out. Despite being the shortest euclidean path, it’s not
time-optimal for omnidirectional robots with an abrupt change in direction and
velocity, as presented by Balkon et al. [1]. Furthermore, because the algorithm
does not take into account the agent’s momentum/direction, which is the whole
robot’s state with velocity and acceleration rather than solely position, there is a
dissonance in its execution between the calculated path and the robot’s real tra-
jectory, as shown in Figure 7. Moreover, the available margin for navigation error
is minimal due to the generated path being tangential to the obstacles. Hence,



RobôCIn Extended Team Description Paper for RoboCup 2023 13

both factors culminate in the high amount of collision and invasion, since the ex-
pansion of obstacles’ boundaries is not a direct guarantee of decreased collisions
in general, besides being a solution that greatly hurts our team performance.

Fig. 7. Dissonance between the planned path in blue and the trajectory executed in
red, with emphasis on the forces acting in the change of edge of the graph.

Also, bigger obstacles reinforce some limitations with our implementation,
given that as they are solely a set of points connected in the scene’s graph, then
it is not possible to increase the complexity of the polygons used as obstacles
further than triangles and rectangles without harming the execution time. Like-
wise, we are not able to properly handle the escape from an obstacle, whether it
is the start or target position. So, with a more generic solution, we are suscep-
tible to dealing with a lot of corner cases, which result in both bad placements
for ball disputes and defense area invasion.

Desired Key Improvements Therefore, we listed the following sought im-
provements for the new algorithm:

■ Fewer number of collisions, allowing better velocity and movement.
■ A generated path harmonic to the real robot’s trajectory.
■ Robust algorithm for real-time and dynamic scenarios as those of SSL.
■ Possibility of an obstacle model that appraises the movement’s dynamic,

considering time as a factor to determine possible collisions.
■ Obstacles that can be differentiated from each other for a greater fidelity of

representation of the world.
■ Possibility of simulating the robot’s movement to feed estimate the robot

reaching range.



14 RobôCIn Extended Team Description Paper for RoboCup 2023

Solutions Adopted Unlike the analyzed options in TDP 2019 [21], this time,
we chose to study and compare Sampling and Trajectory based algorithms, which
are classes of Path Planning Algorithms that had proven some robustness in
terms of Motion Planning for SSL. Despite the popularity of RRT-based algo-
rithms (RRT*, RRT-Connect, ERRT) among SSL teams, we opted for the Bang
Bang trajectory [14] given that its traditional implementation already suffices
all of our requirements, which has a strong integration between pure planning
with a series of points and the proper navigation, since it computes the robot’s
action velocity along the path.

Bang Bang trajectory-based path-plannings were studied and adopted by
reference teams, being reported as important for the achieved results by Tigers
[13,23] and Er-Force [17,24]. Both implementations are open-source and demon-
strate distinct ways of dealing with the implementation of the algorithm. While
Tigers bet on an approach based on selecting intermediate points from a con-
stellation of points around a given origin connected by trajectory segments to
the target, the Er-Force goes with a more open search approach seeking through
the trajectory time and orientation.

Each implementation has its advantages and drawbacks, and we sought to
validate both approaches and their code bases. We converted Tigers’ implemen-
tation to C++, but the achieved performance and some discrepant behavior to
the java version made us adopt Er-Force’s base, which was already developed
in C++ and had an execution time lower than 1ms. But, we found some situa-
tions where the generated path was trajectory-based due to heavy optimizations
which reduced the search’s number of iterations. Therefore, we merged into the
algorithm some of our ideas as well as some from the Tigers’ solution at the cost
of increased time complexity, but still contained in a time frame.

Correlation with Navigation Path planning and navigation are inherently
related. A path planning that doesn’t take into account the robot’s dynamics
causes a big discrepancy in the obtained result. Mainly in the Visibility Graph,
which has sharp changes in the velocity and direction on the generated path.
Then, from solely an ∆S the navigation needs to predict the output for the
robot to fulfill and generate all the movement’s state transitions that affect the
planning result, but none of this feedback is propagated into the next path
planning.

Aiming to close this control loop, trajectory-based algorithms are fed with
the robot’s current state with its position and velocity. But the software relies
on data from the vision system where this current state corresponds to a robot’s
past state that was captured by the currently received frame. Furthermore, an
SSL Robot is capable of changing its velocity in such a way that it is difficult
for vision processing to keep up. Thus, vision-based only approaches limit the
robot state transition rate.

The limitation of detection of the current state by the vision mainly impacts
the ability to control the acceleration and deceleration of the robot when the path
is being adjusted throughout the cycles since it cannot reach the expected state.



RobôCIn Extended Team Description Paper for RoboCup 2023 15

Seeking to mitigate this effect, we developed methods for estimating the current
state of the robot based on the current information in the frame of the vision, the
processing delay of the vision and the speed commands sent to the robot during
this delay, starting from the state seen in the vision and we apply the commands
sent to the robot by replicating their performance time, thus estimating its
real current state. Another more effective approach to this problem, eliminating
assumptions about the current state of the robot, would be to calculate its
current trajectory segment itself, performing embedded navigation, a solution
adopted by the Tigers team that we intend to invest in the following years.

4 Acknowledgement

First, we would like to thank our advisors and the Centro de Informática (CIn)
- UFPE for all the support and knowledge during these years of project and
development. We also would like to thank all our sponsors: CESAR, Microsoft,
Veroli, HSBS, Moura, and Mathworks.

References

1. Balkcom, D.J., Kavathekar, P.A., Mason, M.T.: Time-optimal trajectories for an
omni-directional vehicle. The International Journal of Robotics Research 25(10),
985–999 (2006). https://doi.org/10.1177/0278364906069166

2. Browning, B., Bruce, J., Bowling, M., Veloso, M.: Stp: Skills, tactics, and plays for
multi-robot control in adversarial environments. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering 219(1),
33–52 (2005)

3. Company, Q.: Qt framework, https://www.qt.io/product/framework
4. Company, Q.: Qt signals & slots, https://doc.qt.io/qt-6/signalsandslots.

html#advanced-signals-and-slots-usage

5. Cpp-Reference: std::variant, https://en.cppreference.com/w/cpp/utility/

variant

6. Fernandes, R., Rodrigues, W.M., Barros, E.: Dataset and benchmarking of real-
time embedded object detection for robocup ssl. In: Alami, R., Biswas, J., Cakmak,
M., Obst, O. (eds.) RoboCup 2021: Robot World Cup XXIV. pp. 53–64. Springer
International Publishing, Cham (2022)

7. IEEE: Very small size soccer, https://ieeevss.github.io/vss/index.html
8. Laue, T., Röfer, T.: Particle filter-based state estimation in a competitive and

uncertain environment. In: Proceedings of the 6th International Workshop on Em-
bedded Systems. Vaasa, Finland (2007)

9. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg, A.C.: SSD:
single shot multibox detector. CoRR abs/1512.02325 (2015), http://arxiv.

org/abs/1512.02325

10. Martin, R.C.: Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. Prentice Hall Press, USA, 1st edn. (2017)

11. Melo, J.G., Barros, E.: An embedded monocular vision approach
for ground-aware objects detection and position estimation (2022).
https://doi.org/10.48550/ARXIV.2207.09851, https://arxiv.org/abs/2207.

09851



16 RobôCIn Extended Team Description Paper for RoboCup 2023

12. Melo, J.G., Martins, F., Cavalcanti, L., Fernandes, R., Araújo, V., Joaquim, R.,
Monteiro, J.G., Barros, E.: Towards an autonomous robocup small size league
robot. In: 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Sym-
posium on Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE).
pp. 1–6 (2022). https://doi.org/10.1109/LARS/SBR/WRE56824.2022.9996004

13. Ommer, N., Ryll, A., Geiger, M.: Tigers mannheim (team interacting and game
evolving robots) extended team description for robocup 2019 (2019), roboCup
Small Size League, Mannheim, Germany, 2019

14. Purwin, O., D’Andrea, R.: Trajectory generation for four wheeled omnidirectional
vehicles. In: Proceedings of the 2005, American Control Conference, 2005. pp.
4979–4984 vol. 7 (2005). https://doi.org/10.1109/ACC.2005.1470795

15. RoboCup: RoboCup 2022 SSL Vision Blackout technical challenge
rules, https://robocup-ssl.github.io/technical-challenge-rules/

2022-ssl-vision-blackout-rules.pdf

16. RoboCup: Simulation 2d, https://ssim.robocup.org/
17. Robotics Erlangen e.V. Team: Open Source Framework (2022), https://github.

com/robotics-erlangen/framework

18. Röfer, T., Jüngel, M.: Fast and robust edge-based localization in the sony four-
legged robot league. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.)
RoboCup 2003: Robot Soccer World Cup VII. pp. 262–273. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2004)

19. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Inverted residuals
and linear bottlenecks: Mobile networks for classification, detection and segmenta-
tion. CoRR abs/1801.04381 (2018), http://arxiv.org/abs/1801.04381

20. Silva, C., Alves, C., Silva, E., Martins, F., Cavalcanti, L., Maciel, L., Vińıcius,
M., Monteiro, J.G., Moura, J.P., Cruz, J.V., Santana, P.H., Sousa, R., Rodrigues,
R., Fernandes, R., Morais, R., Araújo, V., Silva, W., Barros, E.: Robôcin extended
team description paper for robocup 2022 (2022), robocup Small Size League, Recife,
Brazil, 2022

21. Silva, C., Martins, F., Machado, J.G., Cavalcanti, L., Sousa, R., Fernandes, R.,
Araújo, V., Silva, V., Barros, E., Bassani, H.F., de Mattos Neto, P.S.G., Ren, T.I.:
Robôcin 2019 team description paper (2019), robocup Small Size League, Recife,
Brazil, 2019

22. Tigers: Robocup match metabase, https://metabase.tigers-mannheim.de/

public/dashboard/2a77fd2f-b8f9-4b34-8b6c-67bdf084b2a8?tournament=

RoboCup2021&tournament=RoboCup2019&tournament=RoboCup2022

23. Tigers Mannheim Team: Open Source Software and Hardware (2019), https://
tigers-mannheim.de/index.php?id=65

24. Wendler, A., Heineken, T.: Er-force 2020 extended team description paper (2020),
roboCup Small Size League, Erlangen, Germany, 2020


