
RoboTeam Twente Extended Team Description
Paper for RoboCup 2023

Jibbe Andringa1,2, Thijs Bink1,2, Brunon Bojkow1,2, Jitka Bojorge-Alvarez1,2,
Hilke van den Born1,2, Cas Doornkamp1,2, Emy Ganzeboom1,2, Umer Javed1,2,

Tom Meulenkamp1,2, and Emiel Steerneman2

1 University of Twente (UT), Enschede, the Netherlands
2 RoboTeam Twente, Capitool 25 Enschede, the Netherlands

info@roboteamtwente.nl
https://roboteamtwente.nl

Abstract. RoboTeam Twente has participated in the Small Size League
of the RoboCup for the previous six years. To help progress the current
state of the competition the main innovations are outlined each year.
This paper showcases the customised solenoids and new basestation. Ad-
ditionally, this paper proposes a Machine Learning environment for play
decision making, our improved path planning method, a standardised
and extensible communication protocol for robots and their central com-
puter, and an alternative/addition to the IR-based ball sensors that are
used in most SSL robots.

Keywords: RoboCup · Machine Learning · Bezier Piecewise Bangbang
trajectories · Communication Protocol · Dribbler ball sensor · Solenoid
optimisation

1 Introduction

RoboTeam Twente is a multidisciplinary team consisting of students from the
University of Twente and Saxion University of Applied Sciences. The team has
been founded in 2016 by a group of students striving to challenge themselves in
the fields of robotics and artificial intelligence. Now, six generations later, it is
up to this year’s team to improve the previous generations’ design and further
innovate on the current state of RoboTeam Twente’s Small Size League (SSL)
robots.
This paper will first discuss the changes made in the hardware in Section 2.
Last years’s extended team description paper (ETDP) [5] introduced a renewed
modular design, which is further built upon this year. This is more elaborated
on in Section 2.2. In this section, the strategy for optimising the handmade
solenoids used in the robots are explained as well.
Section 3 will showcase the design for the new basestation, as well as describe
the requirements that motivated the design.
Section 4 will cover the changes made to the robot’s software. This section will
include updates to the communication protocol, a detailed description of the plan

https://roboteamtwente.nl

2 RoboTeam Twente

to use machine learning for improved play decision-making, and an alternative
to the existing infrared-based ball sensors used in most of the current generation
SSL robots. A render of the robots described in this paper is shown in Figure 1.
The robot’s specifications can be found in Table 1.

Top Board

Top Plate
Power Board

Omniwheel

Mid Plate

Motor Driver

Dribbler Bar

Ball Sensor

Chipper Plate

Wireless Communication

Bottom Plate

Fig. 1. Render of the 2022 version of the robot.

Table 1. Robot specifications.

Dimension 179 x 149 mm
Driving motor Maxon EC-45 flat 50 Watt
Dribbling motor Maxon DCX19S EB SL 24V
Wheel diameter 55 mm
Wheel gear ratio 2:5
Encoder driving motors MILE 1024 CPT
Dribbling bar diameter 10 mm
Dribbling bar length 70 mm
Encoder dribbler bar ENX10 EASY 1024IMP
Microcontroller STM32F767ZI
Ball sensor zForce AIR Touch
Motor controller ROHM BD63002AMUV
Inertial Measurement Unit Xsens MTi-3-8a7g6t
Battery 6S1P 22.2V 150C LiPo
Kicker-and-chipper-board Capacitor 680 µF; Working voltage 450V
Wireless Communication SX1280 2.4GHz

RoboTeam Twente ETDP RoboCup 2023 3

2 Hardware

The hardware consist out of all the physical components of the robot. This is
divided in mechanical and electrical parts. In recent years, RoboTeam Twente
has been working on creating a more modular and robust design of the hard-
ware. This year’s team will continue on that path by focusing on fine-tuning the
innovative ideas.

2.1 Electronics

Since the electronics team of last year focused on a redesign of the existing PCBs
with an emphasis on modularity, a complete redesign this year was not needed.
Instead, research is dedicated to fine-tuning the modular designs to improve their
accuracy, reduce the overall PCB footprint on the robot, and improve testing
capabilities. Whereas traces and headers of several PCBs required relatively
minor modification to support newer components, the kicker-and-chipper board
required more research. The current design of the kicker-and-chipper board can
be found in Figure 2.

Fig. 2. The design of the current kicker-and-chipper board.

Kicker-and-chipper board Over the past year, it has been discovered that
the current iteration of the kicker-and-chipper board could not reliably charge
the capacitor to its working voltage. Hence, further research was dedicated to
the alignment of traces on the kicker-and-chipper board and improvements of
the booster circuit.

2.2 Mechanics

The mechanical overhaul of the previous generation has proven effective. For
this reason, efforts of the current mechanics’ team were dedicated to structural

4 RoboTeam Twente

changes accommodating a new dribbler motor and chipper and to the optimisa-
tion of the solenoid.
Solenoid performance is directly correlated to the placement of the core in re-
lation to the coil. Through empirical research based on a series of experiments,
the ideal placement of the core can be determined. Figure 4 shows the concep-
tual idea of the experiment setup in which the core’s position can be adjusted.
Solenoid-driven kicks of the ball were recorded in various positions using a high-
speed camera, after which ball speeds were extracted.
The results of the experiment shown in Figure 3 (conducted with various config-
urations of the core and coil positions) have indicated that the optimal position
of the end of the core with respect to the opening of the coil lies between 4.5 and
5.5 centimetres (see markings in Figure 4). It should be noted that results do
vary for the different kicker-chipper boards that were tested, that is why every
line indicates a different board
Based on the derived optimal core position, new fixtures (with hexagonal bear-
ings and rods) were developed that simultaneously reduce the freedom of the
rotational movement of the core.

2 3 4 5
1

2

3

4

Core set-off [cm]

M
ea

su
re

d
sp

ee
d

[m
/s

]

Experiment results

Fig. 3. Graph depicting ball speeds (of solenoid kicks) for different kicker-chipper-
boards with respect to the offset of the core in cm.

RoboTeam Twente ETDP RoboCup 2023 5

Fig. 4. Conceptual drawing of the solenoid experiment setup.

3 Basestation

Some years ago, RoboTeam Twente started on the design of a new basestation as
a side project. Previous and current designs consisted of a development board,
such as an Arduino or STM32 Nucleo, connected to either an antenna or custom-
made antenna extension board. Earlier basestations lacked in performance and
were quickly replaced. The currently used basestation held up for a couple of
years, but is starting to show shortcomings with its hardware as the needs of the
team started to grow. It is easy to forget about a relatively inconsequential piece
of hardware such as the basestation. If it works, it works. However, without it,
the robots are "nothing more than overengineered door stoppers" - Basestation
Project Plan 2020-2021.

3.1 Shortcomings

USB limitations The data that needs to go through the basestation has grown
with the years and with the introduction of REM. The data throughput limit
and latency of the Full Speed (FS) USB connection, at 12 Mbit/s, is now a
bottleneck. This is mostly due to the FS USB design with its 1 millisecond frame
time. Because of this, packets to and from the basestation could be dropped as
there were more packets per second than the FS USB connection could handle.

Power limitations The current custom-made antenna extension board features
a connector to which a touchscreen can be connected, but the current needed
to power the screen is too much for the USB powered Nucleo. It is possible to

6 RoboTeam Twente

bypass the USB power by providing an alternate 5V source, but this is fault
prone and needs frequent fixing.

Peripheral limitations An often requested feature is the possibility to log all
traffic that goes through the basestation, as well as the status of the basestation.
For this, an SD card is a possible solution. However, there is no way to connect
it to the Nucleo.

3.2 Design

Fig. 5. Render of the new basestation.

Figure 5 shows a rendering of the new basestation. In Table 2 one can find a list
of features of this new basestation, where a ✓ indicates a feature that is new.
This new basestation is designed around the STM32F767ZIT6 micro controller,
same as the Nucleo and robots. The new basestation features more peripher-
als. For one, the USB is upgraded to a High Speed (HS) USB by using the
USB3300 USB PHY chip through the ULPI interface. This increases the theo-
retical max transfer rate to 480 Mbit/s, from 12 Mbit/s as per USB FS. This
upgrade makes the basestation USB 2.0 compliant, meaning that micro frames
(125µs) are possible instead of the 1ms frames. This reduces the latency and
increases the amount of individual packet transfers possible. The USB interface
is now also split up between a high priority interface (RobotCommands and
RobotFeedbacks) and a low priority interface for all other messages (debugging
data, logging, etc). With this, there is now always enough bandwidth reserved

RoboTeam Twente ETDP RoboCup 2023 7

Table 2. Features of the new basestation.

New Feature
STM32F767ZIT6 microcontroller, same as on the robots
SX1280 antenna x2, one for sending, one for receiving
5 status LEDs
FPC / FFC connector for touchscreen support

✓ XT60 connector for power via LiPo at 12V-24V
✓ Barrel connector for power via adapter at 12V
✓ USB3300 USB PHY chip connected, through the ULPI interface
✓ High-speed USB connection (480Mbit/s) through the USB3300
✓ Slot for Micro SD card
✓ DIP switch x4 for quick configuration

on the bus to keep the main process running smooth, and all other messages are
buffered and transmitted when possible.
The new basestation has two possible power inputs, 12V from a common 12V
supply, or 12-24V from a LiPo battery. This allows the basestation to func-
tion continuously when stationary or from remote areas where no wall power is
present. This, in combination with the touch screen, allows the basestation to
be fully independent and portable for events and demonstrations. With these
power inputs, the basestation now also requires only a single USB connection.
The new basestation also features a high throughput SDIO connection to an SD
card for logging purposes or saving settings between power cycles.

4 Software

Where last year’s ETDP [5] was focused on the hardware, this year’s paper will
mainly be focusing on software. The team has been working on improving and
standardising the communication between AI, basestation and robots. Addition-
ally, the Artificial Intelligence that controls the robots is currently being trained
with a Machine Learning model, in order to enhance the play decision making
software. The controllers of the robots have received an updated structure, al-
lowing for more consistency. Next to that, a proposition for an alternative and/or
addition to the conventional Infrared(IR)-based ball sensor that is being used
by most SSL robots nowadays is stated in this section.

4.1 RoboTeam Embedded Messages

As is the case with every team, the robots engage in wireless communication
with the AI. In the first few years, two simple messages were going from and
to the robot; a RobotCommand message and a RobotFeedback message. Both of
these messages are basically a list of values. For a RobotCommand, think of e.g
velocity, rotation, kicking, and chipping. For a RobotFeedback, think of veloc-
ity, rotation, battery level, and ball-sensor readings. Handwritten code (in C)

8 RoboTeam Twente

was responsible for converting high-level objects (C structs, Protobuf messages,
custom class instances, etc) into an array of bytes that represented these two
messages. Since these messages should be compact to keep throughput high, this
handwritten code involved a lot of bit-shifting and masking. It had to be written
for both the computer and the robots. The problem with this is that code is
error-prone, hard to read, and difficult to modify.

The solution In an attempt to solve this problem, more code was written
(in Python) to auto-generate this C code, giving a definition of the message (in
Python as well). The generator also generates Python files for quick development
and prototyping. There are plans to generate Rust code, as well as Protobuf
definitions. In Listing 1.1 is a small (stripped down) example to control a robot
via Python as well as logging, using the pySerial library for communication with
the basestation. All of the files can be found at the GitHub [9].

Listing 1.1. REM sample code.

1 import s e r i a l
2 import REM. python .REM_BaseTypes as BaseTypes
3 from REM. python .REM_RobotCommand import REM_RobotCommand
4

5 command = REM_RobotCommand()
6 command . header = BaseTypes .

REM_PACKET_TYPE_REM_ROBOT_COMMAND
7 command . pay loadSize = BaseTypes .

REM_PACKET_SIZE_REM_ROBOT_COMMAND
8 command . robotId = 1
9 command . v e l o c i t y = 4

10

11 bits_and_bytes = command . encode ()
12

13 ba s e s t a t i on = s e r i a l . S e r i a l ("/dev/ s e r i a l /by−id /
basestat ion_1 ")

14 ba s e s t a t i on . wr i t e (bits_and_bytes)
15

16 with open (" log . rem" , "wb") as f i l e :
17 f i l e . wr i t e (bits_and_bytes)

The evolution With the capability to quickly and simply generate code, came
the desire to have more messages than just the aforementioned two. For example,
there is now a RobotStateInfo message that contains detailed information such
as individual wheel speeds and PID integral values. There is also a RobotMusic-
Command message to control the speakers. These messages can be used while
developing the robots, and turned off during a match. Over time, the number of
different messages grew, and there are currently sixteen types. A new issue arose,

RoboTeam Twente ETDP RoboCup 2023 9

where custom code had to be written to route and decode each type of message,
even though it was mostly copy-and-paste work. To solve this, the messages were
structured not unlike a TCP packet, where each message contains basic informa-
tion regarding routing. This includes source and destination (robot, basestation,
AI), protocol version, timestamp, and message size. While this slightly reduces
flexibility in creating messages (since basic information is enforced), it greatly
eases development. A bit-wise representation of this basic information can be
found in Figure 6. Accompanying one can find the legend in Table 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

header id C B S P id C r S P version message id

timestamp payload size message body
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

message body end

Fig. 6. New packet structure.

Table 3. Packet legend.

Field Description
header The header byte, indicating the type of packet
id The id of the receiving robot
C The colour of the receiving robot, either yellow (0) or blue (1)
B Whether this is a broadcast packet
S Whether this packet is meant for the basestation
P Whether this packet is meant for the PC
id The id of the transmitting robot

C The colour of the transmitting robot / basestation,
either yellow (0) or blue (1)

r Reserved
S Whether this packet comes from the basestation
P Whether this packet comes from the PC

version The version of the protocol
message id The id of this message, used for aligning packets
timestamp The timestamp in milliseconds
payload size The size of the payload. Max 255 bytes, including this header

10 RoboTeam Twente

The project can be seen as an amalgamation of TCP and Protobuf, borrowing
features from both, resulting in faster prototyping, improved logging, and easier
robot debugging and development. Using Python, engineers can test the entire
robot with a simple script instead of installing the full software stack. The addi-
tional information allows control engineers to profile the robot and extract more
insights by defining new messages.

Open Source The entire project can be found on GitHub [9]. Neither the
generator nor the generated C code require additional libraries. The generated
Python code requires Numpy.

4.2 Artificial Intelligence

The development of AI algorithms for RoboCup SSL robots poses a significant
challenge due to the need for efficient testing and training. To address this, a new
high-level simulator has been designed to improve the simulation process. The
current low-level physics-based simulator (grSim [8]) is known to slow down the
simulation significantly. The new high-level simulator allows for easy implemen-
tation of Machine Learning techniques, thereby enhancing the decision-making
process. Finally, a new path planning algorithm will be proposed, which builds
upon the existing path planning and enhances it by providing efficient collision
avoidance while maintaining the fastest possible path.

High level simulator One important aspect of developing AI for RoboCup
SSL robots is the use of high-level simulators. These simulators allow for the
efficient testing and training of AI algorithms, enabling the development of more
advanced and capable robots without the need for expensive hardware or real-
world testing. In this section, a description of a high-level simulator for RoboCup
SSL robots will be provided that is specifically designed for machine learning in
play decision making.
Inspired by the built-in simulator from TIGERs [6], this simulator does not use
a physics engine, instead it provides a simplified representation of the game
state and the actions that the robot can take. This makes it more efficient for
the training and testing of AI algorithms for decision making. The simulator
includes a variety of tools and features that enable the efficient training and
testing of AI algorithms for play decision making.
One of the key features of the simulator is its ability to generate a wide range
of different scenarios, including various game states and opponent strategies.
This allows the AI to be trained on a diverse set of situations, increasing its
robustness and adaptability in real-world scenarios. Additionally, the simulator
also includes a variety of performance metrics that can be used to evaluate the
effectiveness of different AI strategies. This enables us to quickly test and iterate
on different AI algorithms and fine-tune them for optimal performance.
The proposed simulation utilises a step-based methodology, which allows for the
pausing and progression of the game in both forward and backward directions.

RoboTeam Twente ETDP RoboCup 2023 11

This approach provides significant benefits in terms of its flexibility and ease of
use. Specifically, the ability to adjust the simulation speed as desired is a valuable
feature that allows for a more customised and efficient experience. Additionally,
this step-based approach enables the resolution of specific bugs through the
replay of recent frames. This feature allows for a greater level of control and
precision when identifying and addressing bugs within the AI, ultimately leading
to a more robust and reliable end product. An early version of the simulator can
be seen in Figure 7.

Fig. 7. Early version UI of the high level simulator.

Machine learning The plan is to use this simulator to develop advanced ma-
chine learning algorithms for play decision making. Play decision making is a
critical aspect of the game and requires the AI to quickly and accurately analyse
the game state and make decisions based on that information. The AI will be
trained on the simulator to learn how to make effective decisions in a dynamic
and unpredictable environment.
The proposed approach for training the model involves the use of two key frame-
works: Stable Baselines 3 and OpenAI Gym. Stable Baselines 3, as described in

12 RoboTeam Twente

[7], is a high-performance reinforcement learning library that provides a set of
well-tested and optimised algorithms for training models. On the other hand,
OpenAI Gym, as outlined in [1], is a toolkit for developing and comparing re-
inforcement learning algorithms that provides a standardised environment for
training models.
In this context, the proposed simulator is designed to be easily integrated into
a gym environment, which allows the use of the Stable Baselines 3 framework
to train the model. The trained model will then generate a preferred play as the
action space, which is subsequently transmitted to the RoboTeam Twente AI
(RTT AI). The RTT AI, in turn, calculates the corresponding robot commands
based on the given play. These robot commands are then sent to the simula-
tor, which updates the field and provides observations to the machine learning
model. This process is then repeated in an iterative loop, allowing the model to
continuously learn and improve its performance. A visual representation of the
data flow can be found in Figure 8.

SIM ML-model

RobotHub PlayDeciderAI

Observation

Best PlayObservationRobot Commands

Fig. 8. Data flow diagram.

Path Planning Path Planning is a crucial aspect in robot football. Due to the
dynamic nature of the environment, generating optimal trajectories that balance
time and computational efficiency is imperative. The current strategy employs
the use of bang-bang trajectories for time optimisation and implements obstacle
avoidance by continuously monitoring the generated path for collisions. In the
event of a collision, the trajectory is recalculated with a buffer radius from the
detected obstacle, but this results in slower computations and represents a bot-
tleneck in the current AI system.
To enhance the current approach, a novel path planning strategy is proposed.
This involves the use of Bezier curves as reference trajectories, which leads to
smoother paths that incorporate obstacle avoidance. This is achieved by treat-
ing the robots on the field as obstacles and modifying the Bezier curves using
rational Bezier curves to avoid sub-optimal paths. The path tracking is managed
using a PID controller, which makes adjustments to the heading angle and path
deviation through the implementation of piece-wise bang-bang control. This al-
lows the robot to attain maximum velocity along the generated reference path,
with necessary corrections made. To prevent collisions with obstacles, a Kalman

RoboTeam Twente ETDP RoboCup 2023 13

filter is used for robots in proximity to the path. This allows for a better deter-
mination of the feasibility of the generated path and subsequent modification of
the rational Bezier ratios if necessary.
The path planning algorithm is based on the work presented in [2]. This algo-
rithm optimises the following constraint:

(Ẋ + Ẍ)2 + (Ẏ + Ÿ)2 ≤ 1 (1)

Where X and Y are normalised positions in x- and y-direction, respectively.
Ẋ and Ẏ , and Ẍ and Ÿ therefore represent the velocity and acceleration of the
robot in x- and y-direction, respectively. The algorithm presents several benefits,
including the ability to generate smooth trajectories through the utilisation of
Bezier curves. The use of the robot’s angle at a specific time step and its corre-
sponding acceleration enables the calculation of updated position and velocity
for the next time step.

vn+1 = vn + han (2)

zn+1 = zn + hvn +
h2

2
an (3)

where vn is the velocity at the current time step, vn+1 is the velocity at the
next time step, h is the sample time, an is the acceleration at the current time
step, and zn is the position. The θn needed to compute the acceleration can
be calculated using two modes: ’Intersect Reference Trajectory’ (IR) and ’Out
of Reference Trajectory’ (OR). The IR trajectory accounts for real noise in the
system, which is a feature of this algorithm that allows for better path tracking.
IR mode: The IR mode can be computed using

θn = ϕ+ ζ (4)

The Equation (2) and Equation (3) can be rewritten as :

cn+1 =

[
xn
yn

]
+

(
h− h2

2

)[
vxn

vyn

]
(5)

rn+1 =
h2

2

[
cos(θn)
sin(θn)

]
(6)

Each point on the generated Bezier curve can be represented as X(λ) and Y (λ).
The point closest to cn+1 must be calculated. This can be done by first defining a
function, which takes the difference between the point on the reference trajectory
(X(λ),Y (λ)) and cn+1. The argument of the minimum of this function can be
found to find the point along the generated curve where the point p is closest to
cn+1.

f(λ) =
(
X(λ)− cxn+1

)2
+

(
Y (λ)− cyn+1

)2
, λ ∈ [0, 1] (7)

λp = arg min
λ∈[0,1]

f(λ) (8)

p = P (X(λp), Y (λp)) (9)

14 RoboTeam Twente

The slope of the tangent can now be used to find ϕ and ζ using:

ϕ = tan−1 Ẏ (λp)

Ẋ(λp)
(10)

ζ = sin−1

(
2 |p− cn+1|

h2
sin(π − γ + ϕ)

)
(11)

where ζ is the signed angle of the direction of vector cn+1.
OR mode: This mode involves using PID steering control to compensate for
the cross track error, yerr and the heading error ψerr. The cross track error is
the distance between p and cn+1 and the heading error is the angle difference
between the current heading angle and the slope of the tangent p.
The θn commands can be found using the following PID controllers:

δψ = kpyerr + kdψerr + ki

∫
yerr dt (12)

where δϕ is the deflection of the heading of the robot, represented by:

δψ = ψn+1 − ψn (13)

and where θn can be found using:

θn = ψn+1 + sin−1

((
1

h
− 1

)
|vn|sin(δψ)

)
(14)

The papers algorithm also guarantees the optimal condition while satisfying the
dynamic constraint within the time interval. This is done by refinement of the
acceleration. This is done by:

ȧn = ap1 + km (15)

where ap1 can be found using:

an =
2(zn+1 − zn − vnh)

h
(16)

m is m = −
[
Ẋ(λp) Ẏ (λp)

]T
for the IR mode and is

m = −
[
cos(ψn + δψ sin(ψn + δψ)

]T
k can be found by solving the polynomials of the following equation:

ak2 + bk + c = 0 (17)

a = (1 + h)2(m2
x +m2

y) (18)

b = 2(1 + h)
[
mx(vxn

+ (1 + h)apx1
) +my(vyn

+ (1 + h)apy1
)
]

(19)

c = ((1 + h)apx1
+ vxn

)2 + ((1 + h)apy1
+ vyn

)2 − 1 (20)

RoboTeam Twente ETDP RoboCup 2023 15

4.3 Control

This year, the control team was mainly focused on stabilising the already existing
control software and improving the control of the dribbler. The improvements
made regarding these topics will be elaborated on in this section.

Dribbler as ball sensor Between the last [5] and this ETDP, progress was
made in obtaining feedback from the dribbler motor encoder. Connecting the
dribbler motors to simple one-pulse encoders did not allow for accurate dribbler
control, but turned out to be useful in the form of a rudimentary ball sensor.
In addition to the IR-based ball sensors that have been introduced in the TDP
from 2018 [3], ball possession can now be determined by observing the rotational
dribbler velocity. When this is lower than the rotational dribbler velocity without
a ball, it is most likely that the robot is in possession of the ball.. This feature
proved to be very useful during the RoboCup 2022.
To fully determine if the ball is in possession, three requirements have to be
fulfilled:

1. The rotational dribbler velocity should have reduced compared to the rota-
tional velocity when the robot is not in possession of the ball;

2. The measured rotational dribbler velocity has to be above a given threshold;
3. The dribbler should actively be rotating.

The first requirement assumes that the ball causes friction on the dribbler, mak-
ing it harder to spin around, causing a reduced rotational velocity of the dribbler
bar. The second statement is important for reliability reasons. During testing,
as shown in Figure 9, the feedback is not always the most stable. Last but not
least, the commanded rotational dribbler velocity should not be zero or decreas-
ing since this would decrease the measured rotational dribbling velocity. The old
implementation of this system only checked if there was a rotational velocity
commanded to the dribbler, since it used a boolean (full power, or no power).
This has been changed as a result of the improved dribbler control that will be
discussed in Section 4.3.
To determine if ball possession is lost, two requirements have to be fulfilled:

1. The rotational dribbler velocity should have increased;
2. The rotational dribbler velocity should be very close to the original rotational

velocity before ball possession

Once ball possession is lost, the friction that the dribbler motor endures becomes
less, allowing it to increase its speed once more with the same amount of energy
being fed into it. Since the rotational velocity of the dribbler is not constant,
but it tends to jump around a bit, ball possession is deemed to be lost once the
speed comes very close to its original velocity, before it obtained ball possession.
Of course, another option that allows loss of ball possession is by turning off
the dribbler. This bypasses both requirements mentioned above. However, it

16 RoboTeam Twente

Fig. 9. Measured angular velocity of the dribbler (blue), and the detection of a ball
(orange)

should be noted that this generally should not happen, since the dribbler is
rarely stopped when the ball is in possession. As previously mentioned, individual
measurements of the rotational velocity of the dribbler tend to differ. This issue
is solved by making use of a moving average, smoothing out the measurements
that have been taken. The reason for the difference in individual measurements
are mainly that the ball might not constantly be in contact with the dribbler
bar, even though the robot does actually have the ball in its possession.

Improved dribbler control Inspired by videos demonstrating the capabilities
of ZJUNlict’s robots, the aim was to improve the dribbler and hence ball control
in the same manner as is described in the ETDP of ZJUNlict [4]. To accom-
plish this, the chipper was used as a third contact point for the ball, but more
importantly, a controller was implemented to influence the rotational dribbler
velocities, making it compatible with the angular velocity of the ball.

References

1. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym. https://github.com/openai/gym (2016)

2. Choi, J.w., Curry, R.E., Elkaim, G.H.: Obstacle avoiding real-time trajectory gener-
ation and control of omnidirectional vehicles. In: 2009 American Control Conference.
pp. 5510–5515 (2009). https://doi.org/10.1109/ACC.2009.5160683

3. Doornkamp, C., van Egdom, Z., Humblot-Renaux, G., Klute, L., Leunissen, A.,
Manterola, N., Shipper, S., Sculac, L., Steerneman, E., Tersteeg, S., Vander-
walt, C., van Veelen, W., Wang, H., Weener, J., Jelle, Z.: Roboteam twente 2018

https://github.com/openai/gym
https://doi.org/10.1109/ACC.2009.5160683
https://doi.org/10.1109/ACC.2009.5160683

RoboTeam Twente ETDP RoboCup 2023 17

team description paper (2018), https://ssl.robocup.org/wp-content/uploads/2019/
01/2018_TDP_RoboTeam_Twente.pdf

4. Huang, Z., Chen, L., Li, J., Wang, Y., Chen, Z., Wen, L., Gu, J., Hu, P., Xiong,
R.: Zjunlict extended team description paper for robocup 2019 (2019). https://doi.
org/10.48550/ARXIV.1905.09157, https://arxiv.org/abs/1905.09157

5. Monat, C., Dankers, E., Skurule, K., Steenmeijer, L., Sijtsma, S., Diamantopoulos,
S., Aggarwal, R., Smit, T., van Harten, A.: Roboteam twente extended team descrip-
tion paper for robocup 2022 (2022), https://ssl.robocup.org/wp-content/uploads/
2022/04/2022_ETDP_RoboTeam-Twente.pdf

6. Ommer, N., Ryll, A., Geiger, M.: Tigers mannheim extended team description for
robocup 2022 (2022), https://ssl.robocup.org/wp-content/uploads/2022/04/2022_
ETDP_TIGERs-Mannheim.pdf

7. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research 22(268), 1–8 (2021), http://jmlr.org/papers/v22/20-1364.html

8. Rahimi, M.M., Segre, J., Monajjemi, V., Koochakzadeh, A., MohaimenianPour,
S., Ommer, N., Kimura, A.K., Feltracco, J., Sato, K., Ahsani, A.: Grsim. https:
//github.com/RoboCup-SSL/grSim/ (2021), gitHub repository

9. RoboTeam Twente: Roboteam embedded messages. https://github.com/
RoboTeamTwente/roboteam_embedded_messages (2023)

https://ssl.robocup.org/wp-content/uploads/2019/01/2018_TDP_RoboTeam_Twente.pdf
https://ssl.robocup.org/wp-content/uploads/2019/01/2018_TDP_RoboTeam_Twente.pdf
https://doi.org/10.48550/ARXIV.1905.09157
https://doi.org/10.48550/ARXIV.1905.09157
https://doi.org/10.48550/ARXIV.1905.09157
https://doi.org/10.48550/ARXIV.1905.09157
https://arxiv.org/abs/1905.09157
https://ssl.robocup.org/wp-content/uploads/2022/04/2022_ETDP_RoboTeam-Twente.pdf
https://ssl.robocup.org/wp-content/uploads/2022/04/2022_ETDP_RoboTeam-Twente.pdf
https://ssl.robocup.org/wp-content/uploads/2022/04/2022_ETDP_TIGERs-Mannheim.pdf
https://ssl.robocup.org/wp-content/uploads/2022/04/2022_ETDP_TIGERs-Mannheim.pdf
http://jmlr.org/papers/v22/20-1364.html
https://github.com/RoboCup-SSL/grSim/
https://github.com/RoboCup-SSL/grSim/
https://github.com/RoboTeamTwente/roboteam_embedded_messages
https://github.com/RoboTeamTwente/roboteam_embedded_messages

	RoboTeam Twente Extended Team Description Paper for RoboCup 2023

