luhbots Soccer
Team Description for RoboCup 2023

Larissa Seegemann, Fabrice Zeug, Patrick Ebbighausen, Lukas Waldhoff, Max
Westermann, Sebastian Knackstedt, Max Kéanner, Tim Fiichsel, Robert Hart,
and Tobias Pahl

Institute of Automatic Control
Gottfried Wilhelm Leibniz University Hannover
Appelstr. 11, 30167 Hanover, Germany
soccer@luhbots.de
https://luhbots-hannover.de

Abstract. luhbots has placed third in the RoboCup 2022 Small Size
League Division B. Able to establish ourselves in this division as a first-
time contender, we present this year’s Team Description Paper (TDP).
The focus lies mainly on the software setup exclusively with C++ instead
of ROS and our novel strategy structure including artificial intelligence
(AI) components.

Fig. 1: Two robots of our first generation

2 L. Seegemann et al.

1 Introduction

Having opened its Small Size League (SSL) branch in 2019, the luhbots Soccer
team grew in recent years to an astounding amount of 34 active members. For
the first time ever we are able to offer six different fields of activity - mechanics,
electronics, firmware, software, strategy and organisation. Our team is comprised
of students stemming from a variety of degree programs, such as, not only en-
gineering, but also economics, physics, etc.. With the help of the new as well as
the long-standing members, we look forward to the RoboCup 2023 in Bordeaux
where we can present our recent innovations.

We, the student robotics team of the Leibniz University Hannover, were able

to put robot generation 1 (see Fig. 1) to the test at the RoboCup 2022 in Thai-
land. The robots proved to be highly reliable in their hardware and electronics
which are presented in detail in last year’s paper [1]. As we owe our success to
the functional setup, we decided to make minor improvements to the current
fleet of robots for the upcoming RoboCup 2023, instead of building an entirely
new generation.
Comparably, the software is undergoing the largest change, as we switch from the
Robot Operating System (ROS) to a solely C++ based approach. Our strategy
is also being revised. The non-adaptive decision making process is being partially
replaced by Al components.

The section 2 describes the new dribbler design offering a more exact and
space-saving structure with better torque transmission. The upgraded main-
board design is discussed in section 3 for which the firmware is described in
section 4. The reworked basestation is also discussed in the firmware section.
The section 5 outlines our entirely revised software development process and
repository setup. The reworked strategy is described in detail in section 6.

luhbots Soccer Team Description for RoboCup 2023 3

2 Mechanics

The robot’s structure has changed slightly compared to the previous year. The
base plate was adjusted to obtain more space inside the robot’s body. Further-
more, the dribbler system offers significant new features which are presented in
this chapter. The base plate changes are not covered in this paper, as they do
not affect the robot’s performance.

2.1 Dribbler

Previously the focus lied on two main principles, simple production and an inex-
pensive final product. The V1 dribbler body is built from a single piece of bent
aluminium and a drone motor drives the roller (see Fig. 2a). The drone motor
is the Black Bird V2 Freestyle Motor from T-Motor [2] and it’s details can be
derived from Table 1.

The disadvantage of the V1 dribbler design is that it presents an unwieldy struc-
ture. This is due to its single-sheet setup and the large diameter of the drone
motor. The prior brings with it, due to the bending process, a low production
accuracy. Additionally, the injection-moulded polyacetal gears in combination
with the drone motor cannot transmit sufficient torque onto the ball, because
the gear’s material leads to poor tolerances. Furthermore, the ball centering with
the roller’s shape only engages for accommodating conditions where the relative
speed between ball and robot is slow and linear. The dampening with the help
of a thin layer of soft foam behind the dribbler frame leads to vibrations and
bouncing of the ball out of the dribbler. This causes problems for the reliability
of the light barrier readings. Therefore we conclude that the ball is not satisfy-
ingly manipulable with the old dribbler drive.

(a) V1 (RoboCup 2022) (b) V2 (RoboCup 2023)

Fig. 2: Dribbler versions

4 L. Seegemann et al.

With the aim to improve the points mentioned above, an overhaul of the
entire dribbler is required. The revised dribbler V2 will be integrated into the
robots for the upcoming tournament. First of all, a new drive motor is chosen,
namely the ECX SPEED 16 from maxon [3] whose configuration can be derived
from Table 1. The ECX SPEED motor can spin significantly faster than the
Black Bird drone motor and the integrated Hall sensors enable precise speed
control.

The plastic gears are replaced with full metal gears, two of which are made out
of steel and one out of brass placed in between. The metal material offers higher
workability, smaller tolerance and improved handling of torque. The gear ratio
is adapted to the new motor increasing the torque while limiting the rotation
speed to around 20000 rpm (see. Table 1).

In order to increase manufacturing accuracy, the dribbler body V2 consists of
three separate elements which are screwed together (see Fig. 2b). Smaller toler-
ances are achieved by milling flat the functional surfaces of the laser-cut parts.
Other teams such as the TIGERs Mannheim in [4] or ER-Force in [5] show their
implemented dribblers consisting of separate parts as well. This inspired us to
do the same.

The self built roller bearing remains the same, as it allows to quickly replace
the roller. It should be considered, however, to make them out of aluminium for
greater stability and durability, instead of plastic. The bearing can be reviewed
in detail in [1].

Figure 2 as well as Table 1 show the current dribbler model V2 with all the
adjustments mentioned compared to last year’s version V1.

Further improvements will be made to the roller shape to achieve a more reli-
able centering and to the dampening system to get a smoother ball manipulation.
These are, however, not discussed in this paper.

Table 1: Dribbler comparison V1 from RoboCup 2022 and V2 for RoboCup 2023

V1 V2
Body setup single piece three parts
Motor model |T-Motor Black Bird V2 Freestyle Motor 1950KV|ECXSP16L BL KL A STD 24V
Gear material plastic steel and brass metals
Gear ratio % %
Roller speed = 10000 rpm =~ 20000 rpm

luhbots Soccer Team Description for RoboCup 2023 5

3 Electronics

The electronics department aims to overhaul the entire current electronic struc-
ture for the RoboCup 2024. However, for this year’s RoboCup 2023 minor im-
provements should suffice, as the overall setup proved to operate reliably during
last year’s tournament.

3.1 Mainboard

The mainboard is one of the major revised electric components. The previous
version, presented in detail in [1], was not usable for the tournament. The micro-
controller was not reliable enough, because it sporadically sent faulty bytes over
SPI leading to the ESCs receiving incorrect commands. This was possibly due
to faulty hardware components. The worst case scenario lead to a destruction of
the motordrivers when certain safety checks were disabled. Instead a provisional
setup consisting of an ESP32, a breakout board, regular buck converters and a
NRF24L01 module was used. The NRF24L01 module had issues communicating
in the RoboCup 2022. For this reason a new mainboard is designed for 2023. The
new design features two RP2040 micro controllers. One is used for controlling
the motors and the kicker. The other RP2040 controls the dribbler, the power
switch and the communication with the server. An IMU is placed on the main-
board so that the robot is able determine its position more accurately.

The connection to the server is cause for most issues regarding the provisional
mainboard. The server is able to send packets to the robots with a significant
information loss, but the robots are unable to send status information back.
Based on this a new RF transceiver is chosen. The SX1280 allows to optimize a
larger variety of settings. Additionally the SKY66112 amplifier is used to boost
the signal. The TIGERs Mannheim [6] used the same transceiver and amplifier
combination in Bangkok [4] and their problems regarding any connection issues
where mitigated.

3.2 Basestation

The basestation is adapted to use the new RF transceiver and amplifier. TIGERs
Mannheim connect their basestation over ethernet [6] which leads to faster re-
sponse times. We adopt this technique in the redesigned basestation. This allows
the basestation to receive referee commands and vision data directly with which
it can respond quicker. The basestation is a self built Raspberry Pi HAT and
can be used independently without a server.

3.3 Dribbler

As the Dribbler hardware is redesigned, the dribbler electronics follow suit. The
main difference is the integration with the hardware. The ball detection light

6 L. Seegemann et al.

barrier is built from three pcbs which are connected at their respective edges
and mounted onto the dribbler body, described in section 2. This reduces the
amount of cabling that needs to be done which is less error-prone.

3.4 Kicker

The kicker design used in Bangkok proved successful. It allows reliable control
of the kicking strength. However, sometimes the mechanism that retracts the
plunger, which consists of elastic bands, fails. To increase reliability, the elastic
bands are replaced with weak springs for the RoboCup 2023 in Bordeaux France.
The kick strength is controlled via the pulse width at the IGBT gate, instead of
adjusting the capacitor voltage, as described in last year’s TDP [1].

In the medium term, we plan to further increase the safety of our kicker by
lowering the voltage below 120VDC.

4 Firmware

With the change of the microcontroller the firmware is rewritten entirely. In fore-
sight of possible future microcontroller upgrades, the firmware is coded in Rust
[7] which would allow the code to be updated accordingly, instead of completely
rewritten. The firmware uses the embedded-hal crate [8] to allow for reuse of
code across multiple architectures.

4.1 Mainboard

As outlined in section 3 the new mainboard contains two microcontrollers. This
brings with it challenges concerning the interaction between them. A UART
connection with hardware flow control was decided upon. Two methods of com-
munication over the UART are implemented. One is connection based and the
other connection-less. Both use the same type of packet which consists of a start
byte, the data, a 16-bit CRC, and a stop byte. To ensure the data or CRC
does not contain start or stop bytes, they are cobs encoded [9]. The connection
based communication uses an acknowledgement and timeout mechanism with
one packet in flight. For the dribbler motor we switched from a timing based
protocol to a digital protocol called Dshot. Dshot allows a better control of the
motor. Additionally the protocol enables the ESC to send telemetry, such as
the current motor speed, back to the microcontroller [10]. Also, with this the
mainboard can set a specific dribbler speed instead of setting just the torque.

luhbots Soccer Team Description for RoboCup 2023 7
4.2 Basestation

For the basestation several new features are planned. Alternatively to the last
version it communicates via Ethernet, instead of USB.This change is inspired
by Mannheim TIGERS’ open source firmware design which is reviewable in [11].
This makes communication easier, because we do not need to use the serial-
over-usb function anymore. The Ethernet connection also allows to listen to
ssl-vision packets and send the vision information directly to the robots. More
information about this decision can be found in section 5.2. On the basestation
side this works by listing to both our own control packets and ssl-vision packets
and merges them together. The basestation also contains RGB-Leds to allow fast
visual indication of robot status. This should help to indicate problem sources
more easily, for example a loss of connection can now be seen by simply looking
at it.

5 Software

The previous software setup appears to be the major drawback for our team
during the RoboCup 2022 in Bangkok. The design with ROS causes a large
overhead in general and is cumbersome to code for our desired application. The
strategy development with python leads to a software crash during game states
which are not anticipated in the code. Also the software repository grew nearly
unsupervised over the last three years which resulted in disarray. For these rea-
sons the software for the RoboCup 2023 is completely overhauled. No code is
transferred from the previous version.

Our experience from the past years allows us to have sufficient understanding of
what our software should be able to do and how it should be structured. It is
now developed with a modular structure in mind. This makes the code cleaner
and generally easier for new members to comprehend. Additionally each commit
in the team is signed off by another team member.

5.1 Replacement of ROS Modules

The ROS based approach to our code is rejected for the new software structure.
This is due to the system not being sufficiently suitable for our application. ROS’
node based approach makes it difficult to debug code, as nodes run independently
from each other. Also the main application for ROS is running on the robot it
controls. In our setup we need a software which can run without having ROS’
system dependencies installed.

Removing ROS from our software resulted in a complete overhaul of our software,
since it relied heavily on some of the ROS modules. New concepts for these
models need to be implemented and are presented below.

8 L. Seegemann et al.

The Visualization was previously implemented with a ROS 3D visualization
tool called RViz [12] to be able to have 3D visualizations of the robots and
game data. RViz offers a way to have a GUI representation for displaying in-
ternal states of our software and the ability to take control over execution and
parametrization of different tasks. This is mandatory for testing and adjusting
robot behaviour without the need to write code. Moving away from ROS, the
new solution needs to offer said capabilities.

The new visualization is called Luhviz and is also written in C++, so that it
is better integrated into the rest of our software. The Dear ImGui GUI [13]
library is used for creating the basic window and interaction widgets like but-
tons. Moreover a render view is provided which loads OpenGL code to achieve
a 3D renderer inside the GUI. While RViz could only be extended with the use
of plugins, writing our own visualization allows for a finer control and a more
fitted solution for our own custom software. In the beginning it was tedious to
recreate certain parts of RViz, but now it is much easier to include new features
and adapt the appearance and practicality to our team’s desires. An extract of
our visualization can be seen in Figure 3.

Fig. 3: The new Luhviz GUI

To allow other modules to display objects in Luhviz, an interface is devel-
oped called MarkerService which works similar to the markers in ROS. There
are different types that can be created by other modules and displayed via the
service. The marker types can be either 3d or 2d. The 3d markers are being used
for structural objects like the robots, cubes, spheres and indication arrows. The
2d markers on the other hand can be used to display advanced state informa-
tion for example LineStrip, Heatmap and Text making them especially useful
for debugging and analysing. The MarkerService converts these markers so they
can be displayed with OpenGL in Luhviz. This way markers form the basis for

luhbots Soccer Team Description for RoboCup 2023 9

displaying and simulating the gameplay as well as providing many analysis and
debugging possibilities for the remaining software modules.

Luhviz can also send commands to other modules, e.g. if the user wants a robot
to perform a certain skill, there is the so-called data proxy. This interface con-
nects Luhviz to the simulation, the LocalPlanner and all other relevant modules,
allowing the user to change behaviours and settings. By separating Luhviz from
the rest of the software and having crosstalk enabled through the marker service
and data proxy, the visualization is clearly differentiated from the rest of the
software. This means it can each be easily replaced if necessary. It also makes
the use of automatic testing for GUI somewhat possible.

The Configuration allows loading, editing and accessing of configuration pa-
rameters during runtime without using ROS. As a replacement format for the
configuration files which were formerly written in YAML, TOML was chosen.
That is because it has a clear syntax and convenient grouping of parameters.
When it comes to implementing the module the first task is to parse the TOML
files. That is achieved with the toml++ library for C++ [14] which completes
the extensive parsing and manual editing of TOML files. Next an architecture
for the configuration module is needed. It has to be as robust as possible so
it was decided that the parameters should be available as members of a struct
in C++. This means compile-time-errors are raised if an incorrect parameter
name is used in the code. The challenge is to make the parameters iterable and
thread-safe, but at the same time statically typed. The parameters can then be
dynamically shown in the visualization and their values loaded from a configu-
ration file, without writing extra code for each parameter. This is achievable by
representing each parameter as a class providing methods for thread-safe data
access and singular configurations. The representation as class provides methods
for iterating over its members as well as loading and saving to and from TOML-
files. Combining this with a class which stores all the configuration classes it is
possible to dynamically iterate over all configurations including their parameters
while also being able to access them statically.

5.2 Robot Control

The robot control is newly implemented in the new framework. Instead of the
ROS transform framework [15] our self developed transform tool is used. It is
inspired by the ROS transform framework, but improves it in terms of multi-
threading, handling of velocities and extrapolating. A circular buffer is used to
store poses and velocities. New data is always written in the element next to
the current latest element. When the writing process is complete the pointer to
the latest element is updated accordingly. Reading can be done simultaneously
and thus the use of mutexes is avoidable, as data cannot be changed after it is
pushed to the buffer.

The new tool has the capability to store velocity information. During our par-
ticipation in the RoboCup 2022, the velocities were calculated by numerically

10 L. Seegemann et al.

deriving the position for the two latest positions. Even though the positions were
filtered by a Kalman filter [16], which was adapted to compensate for the vision
delay, heavy noises in the velocity data were detectable. Thus, we completely
changed our strategy to determine the position and velocity of our robots. The
position of the robots is now calculated on the robots themselves. For that the
base station sends the measurements from the shared vision system to the robots.
The firmware on the robots then uses this information in combination with data
from the motor controller and the newly implemented IMU to calculate its own
position. This position is then sent to the central server to be used in the robot
control and strategy modules. It is noteworthy that this robot position calcula-
tion strategy is heavily inspired by the implementation of TIGERs Mannheim,
as presented in [17].

We also reworked and -implemented the robot control algorithms in the new
framework. The robot control is now based on the circular fields approach, ini-
tially proposed in [18]. It originates from the artificial potential fields approach
by Khatib [19] which describes a reactive strategy to control robots. While the
Khatib’s method is often used as local control algorithm in combination with
global planning unit, the circular fields method from Singh et al. is capable
of globally controlling a robot to the desired position. The approach is further
refined in [20] and [21]. A key part of the circular fields is the determination of ro-
tation vectors which define field’s rotational direction an through this the bypass
direction for an obstacle. Becker et al. proposes to use a multi agent framework
to evaluate every possible combination of bypass directions inside a simulation
and derive the best outcome based on a cost function. We already implemented
this approach for the RoboCup 2022 and used it successfully. However, a big
disadvantage is the computational cost required to evaluate all combinations of
rotation vectors. Especially when controlling multiple robots at once, the com-
putational load of the multi agent method cannot be provided by an ordinary
laptop’s processor an thus a powerful desktop computer needs to run the plan-
ner. To avoid the use of a separate desktop computer during the tournaments,
the new approach bases on the works of Haddadin et al. in [20]. Here, the rota-
tion vector is defined using the robot to target vector. Obstacles that are on the
robot’s left side, when it is moving towards the target, are avoided to the right
and vice versa. With that, the robot always tries to stay on the direct line from
robot to target. Additionally to the approach proposed in [20], all control units
cooperate. To avoid collisions with our own robots, both control units use the
same rotation vector if two robots are close to each other. This avoids that both
robots try to bypass the other in the same direction in the global coordinate
system. Different to all previously referenced approaches, we still use our feature
framework to assign high level tasks which can be reviewed in more detail in [1].

The feature framework was also improved, compared to the last years ver-
sion and is renamed to ”skill/task framework”. Skills are now actions which
every robot is capable of executing, for example obtaining the ball or moving

luhbots Soccer Team Description for RoboCup 2023 11

to a point. These skills are defined in C++ using a builder class. This makes
the coding of new skills relatively easy for software development members who
have only basic C++ skills. At the same time the framework provides power-
ful features to customize the behaviour of the robot through custom callbacks
and overwriting of constants. Skills are composed with so called components that
can be combined individually. The components define how commands sent to the
robot are calculated. A task describes the specific execution of a skill. ”Robot
3 should obtain the ball” or ”"robot 2 should mark enemy 1” are examples for
tasks.

5.3 Continuous Integration

The continuous integration approach aids our software development. Besides the
code itself, the development process also underwent changes. We grew up to 15
members in the software department since last year and need a workflow which
can handle that amount of people. To achieve this, we mainly use GitLab with
all its features [22]. Our new development process is presented below.

When a feature is requested or a bug is found an issue is created. The issue can
then be picked up by a software team member who feels comfortable resolving
it. A new feature branch from this issue is created. After the required changes
are made, this feature branch contains exclusively all the changes for the given
issue. This make it easy to review the code when the corresponding merge re-
quest is created from the feature branch into the main branch. Our continuous
integration server verifies the overall code quality with the respective changes.
The verification includes if the software builds, the tests are successful and the
code does not contain any bugs. The bugs are found with statics-analyzers. If
the examination is successful the code an be merged into the main branch. With
every merge into the main branch, extra build steps are executed, for example
the generation of an up-to-date version of the software documentation. With this
improved development process we can easily manage many people working on
the same codebase, while always having a functioning version of the software.

5.4 Python Bindings

Python Bindings are introduced to simplify and improve strategy development,
which is explained in more detail in section 6. In addition to the replacement of
ROS modules, another change in our new software is the ability to use it as a
Python module. These bindings are generated via pybind11 [23] automatically
with every merge to the main branch. Since the strategy development requires
extensive prototyping including trial-and-error testing, it is inconvenient to de-
velop the strategy in C++4. The Python bindings work by loading a python
script and running the module. The module loads the C++-Core of the soft-
ware. The Python script replaces some parts, for example the task assignment
module. This works via callbacks which are called by the software when a new
calculation is necessary. Now a new strategy can be tested more easily without

12 L. Seegemann et al.

having to recompile the project. This also makes it possible to have multiple peo-
ple developing new tactics and strategies simultaneously for the robots without
having to learn the entire complexity of C++.

6 Strategy

Our previously implemented strategy showed drawbacks during last year’s RoboCup
2022 competition. for example the threshold to shoot goals was too low, the
passing skill execution was poor and generally the team played too passively.
We assume this is due to our non-adaptive decision making process.

Because the luhbots Soccer branch has grown, we are able to introduce the strat-
egy department as an independent field. The accompanied improved strategy is
presented in this section.

The task of the software strategy is to analyze the current state of the game
and assign tasks to the robots based on this analysis. These can include, for
example defending a particular opponent or playing a pass to a teammate. This
assignment of tasks is done in several steps. The information flow used in this
process is shown in Fig. 4.

Software Strategy Software

T

|

! Low-Level
Information

Role Manager

High-Level
Information

Assigned Roles

Observer
Local

Vision Data Planner

Rule Systems

Goalie Rules

. Defender Rules
Low-Level Information

Supporter Rules

Striker Rules

Fig. 4: Information Flow and Components of the Strategy Module

6.1 Observer

The observer has the task of converting low-level information from the vision
into high-level information such as goal probabilities or danger levels of the op-
ponents. Previously, this conversion was done by heuristics. First, features are
defined which can be used to abstractly describe the current state of the playing
field. When choosing features, it is important that they describe all essential
properties of the current state completely and accurately. Relative distances be-
tween the robots, the ball and the goal can be used, as well as any lines of sight,

luhbots Soccer Team Description for RoboCup 2023 13

proximity to the shooting path, etc.. From a weighted combination of these fea-
tures, scores can be determined that describe high-level information on which
the task assignment can be based in the following steps.

The experiences of the last years have shown that this approach is in principle
suitable to describe the state of the playing field, but the result is subject to
a human bias and the optimization of the weightings is also extremely time-
consuming. Therefore, the goal is to automate this process in the future using
machine learning methods. Similarly to the previous implementation, the fea-
tures are defined first. Subsequently, the training data is recorded in a specially
created training scenario or a game simulation. For example, a goal kick can
be simulated and features such as the distance of the ball from the goal or the
distance of opponents from the line of fire are recorded. It is also stored whether
or not a goal was scored under these conditions. This information is then used to
train a model with random forests, as described in [24], which are mainly used
for this purpose. However, as [25] shows, convolutional networks could also prove
suitable. We hope to achieve better results, with the analysis of the playing field,
reduce the human bias and manual optimization effort of heuristics.

6.2 Role Manager

A major problem in the past was to find a balance between offensive and de-
fensive behaviour. Since all robots are built the same way, each robot can in
principle perform both offensive and defensive tasks. With the previous strategy
these tasks are assigned by a central rule system. This system is able to perform
a reasonable task assignment in every possible situation. However, this task is
extremely complex due to the continuous state space and the large number of
robots. This results in a confusing code, which makes adaptations and exten-
sions much more difficult. Therefore, our role management system is now split
into two steps. The first step is to determine how many attackers, defenders, etc.
are needed. This is done by the Role Manager which assigns a suitable role to
each robot. The second step is to evaluate for each robot which task should be
performed, based on the role assigned to it. This is described in section 6.3.
The high-level information of the observer can be used to decide how many
robots are needed for each role. For example, the average threat level of the
enemies determines how many defenders are needed at a given moment. On the
other hand, if it is evaluated that our team has had possession of the ball for a
long time and an offensive is very likely to result in a goal, more robots can be
assigned to an offensive role supporting the current attack. At the same time,
however, a set amount of defenders should exist at all times to prevent counter-
attacks. The Role Manger can guarantee this by specifying a minimum number
of defenders which cannot be undercut. This way, more offensive and defensive
systems can be designed by increasing or decreasing these limits accordingly. In
the future, the use of reinforcement learning to further improve role assignment
will also be explored as shown in [26].

14 L. Seegemann et al.

6.3 Task Assignment

In the past, game decisions were made by a central rule system as described in
[27]. Each rule contains a priority, a condition for execution and an action on
execution. The conditions of the rules are checked in descending priority. If the
rule’s condition is met, the associated action is executed, otherwise the rule is
skipped and the next rule is evaluated.

It has been shown that such a system is in principle well capable of making game
decisions. However, if a central system is used to control all robots this quickly
reaches a high level of complexity which makes manual adjustments and exten-
sions to the system difficult. Therefore, we replace the central system by several
smaller systems. Each of these smaller systems only controls robots of a certain
role, instead of the team as a whole. This allows the development process to be
parallelized regarding the separate systems. Changes to the offensive behavior
no longer also affect the defensive. We hope to simplify the development and
optimization of the rule systems and as a result improve our overall gameplay.

7 Acknowledgements

Special thanks to our supporting institutes, the Institute of Automatic Control
(irt) and Institute of Mechatronic Systems (imes). We appreciate the financial
and educational support. Also we want to mention all RoboCup 2022 SSL teams’
fair play. They were incredibly forthcoming and gave us advantageous insight
into their research, especially TIGERs Mannheim. Finally, grateful for being
part of the Leibniz University Hannover, we also want to thank our university
for supporting several different student associations which allow us to exchange
interdisciplinary ideas.

References

SEEGEMANN, Larissa, 2022. luhbots Soccer Team Description for RoboCup 2022

T-MOTOR. https://uav-en.tmotor.com/. Last accessed 24 Jan 2023

maxon, https://www.maxongroup.us. Last accessed 23 Jan 2023

OMMER, Nicolai; RYLL, Andre; GEIGER, Mark, 2022. TIGERs Mannheim (Team

Interacting and Game Evolving Robots) Extended Team Description for RoboCup

2022

5. BERGMANN, Paul; ENGELHARDT, Theresa; HEINEKEN, Tobias; HOPF,

Valentin; SCHMID, Michel; SCHMIDT, Mike; SCHOFER, Felix; SCHUH, Kristin;

STADTLER, Michael, 2022. ER-Force 2022 Extended Team Description Paper

TIGERs Mannheim, https://www.tigers-mannheim.de/. Last accessed 21 Jan 2023

Rust, https://www.rust-lang.org/. Last accessed 27 Jan 2023

8. embedded-hal github, https://github.com/rust-embedded/embedded-hal. Last ac-
cessed 23 Jan 2023

9. CHESHIRE, Stuart; BAKER, Mary, 1999. Consistent overhead byte stuffing. In:
IEEE/ACM Transactions on networking, 7. Jg., Nr. 2, S. 159-172.

10. DSHOT - the missing Handbook, https://brushlesswhoop.com/dshot-and-

bidirectional-dshot /. Last accessed 23 Jan 2023

=

NS

luhbots Soccer Team Description for RoboCup 2023 15

11. Firmware of Mannheim TIGERs, https://github.com/TIGERs-
Mannheim/Firmware. Last accessed 27 Jan 2023

12. ROS rviz pacakge, https://wiki.ros.org/rviz. Last accessed 23 Jan 2023

13. Dear ImGUI, https://github.com/ocornut/imgui. Last accessed 23 Jan 2023

14. toml++ library, https://marzer.github.io/tomlplusplus/. Last accessed 28 Jan
2023

15. ROS tf package, https://wiki.ros.org/tf. Last accessed 21 Jan 2023

16. KALMAN, Rudolph Emil, 1960. A new approach to linear filtering and prediction
problems. In: Journal of Basic Engineering

17. ABBENSETH, J.; and OMMER, N., 2015. Position Control of an Omnidirectional
Mobile Robot.

18. SINGH, Leena; STEPHANOU, Harry E.; and WEN, John T., 1996. Real-time
robot mo- tion control with circulatory fields. In: Proceedings of the 1996 IEEE
Inter- national Conference on Robotics and Automation, Minneapolis, Minnesota,
USA

19. KHATIB, Oussama, 1985. Real-time obstacle avoidance for manipulators and mo-
bile robots. In: Proceedings of the 1985 IEEE International Conference on Robotics
and Automation, St. Louis, Missouri, USA

20. HADDADIN, S.; BELDER, R.; ALBU-SCHAFFER, A., 2011. Dynamic Motion
Planning for Robots in Partially Unknown Environment. In: Proceedings of the
18th World Congress The International Federation of Automatic Control, Milano,
Italy

21. BECKER, Marvin; LILGE, Torsten; MULLER, Matthias A. and HADDADIN,
Sami, 2021. Circular Fields and Predictive Multi-Agents for Online Global Trajec-
tory Planning. In: IEEE Robotics and Automation Letters 6

22. Gitlab Docs, https://docs.gitlab.com. Last accessed 23 Jan 2023

23. pybind11, https://github.com/pybind/pybind11. Last accessed 23 Jan 2023

24. BREIMAN, L.. 2001. Random Forests, In: Machine Learning 45, 5-32.
https://doi.org/=10.1023/A:1010933404324

25. POMAS, T.; NAKASHIMA, T., 2018. Evaluation of Situations in RoboCup 2D
Simulations Using Soccer Field Images. In: RoboCup 2018: Robot World Cup XXII.

26. HU, C; XU M. and HWANG K-S., 2020. An adaptive cooperation with reinforce-
ment learning for robot soccer games. In: International Journal of Advanced Robotic
Systems. https://doi.org/=10.1177/1729881420921324

27. LIU, H.; GEGOV, A. and STAHL, F. T., 2014. Categorization and Construction
of Rule Based Systems. In: Communications in Computer and Information Science.
https://doi.org/=10.1007/978-3-319-11071-4_18

