
The A-Team Technical Description Paper 2023

C. Avidano, S. Barnette, M. Barulic, L. Medrano, J. Neiger, R. Osawa, E.
Peterson, J. Spall IV, J. Spalten, W. Stuckey, M. Woodward

The A-Team

Abstract. ”The A-Team” was formed in August of 2021, mostly from
Georgia Tech alumni who previously participated on the RoboJackets’
RoboCup SSL Team. They seek to solidify their technical skills, inspire
the communities in which they are present, and stay connected with
friends across the globe. The 2023 competition year is The A-Team’s first
attempt at qualification. This TDP covers the rationale for the founda-
tional technical decisions made as a 1st year team. Focus was placed on
solid foundations: wheel geometry analysis, safe and reliable control and
state estimation, and expandable AI and planning infrastructure.

Keywords: RoboCup · Small Size League · Motion Control · Radio

1 Software

The AI software is written in C++ with a ROS2 based middleware and a Vue
based UI[1]. The high level architecture will be described with a novel modeling
of the multi-robot, multi-role dependency chain in the behavior planning step.
Next, the iLQR based trajectory planner with uncertainty modeling is detailed
to optimally intercept the ball when capturing and one touch kicking. A delay
modeling approach for trajectory planning is also detailed to improve re-planning
performance when taking into account the action to measurement delay through
SSL-Vision. A new IMM based vision filter is then detailed which will more
accurately estimate motion of objects during highly non-linear transition periods.

1.1 High Level Architecture

The overall software is split into two main classes of modules: bridge nodes
and module nodes. The bridge nodes directly convert the league protobuf (and
custom radio packets) into a standard ROS message, and vice versa. The modules
nodes run the algorithms. The two main module nodes are the vision filter and
AI. The bridge and module nodes with their respective communication are seen
in Figure 1. Within the AI module node, a multistage pipeline is run each frame.
Firstly, the ”world” is prepossessed. This provides a space for high level metrics
and multi-frame heuristics to be run reducing wasted CPU resources due to
recalculating already calculated values. Next, given the view of the world, the
AI proposes multiple different possible behaviors using the DAG(t) structure.
Then, each proposed behavior is scored and the best one is selected. This selected



behavior is then fully planned and assigned out. Both the behavior proposal stage
and the behavior selection stage have access to a behavior realization library.
This library fully assigns and generates trajectories for a given plan allowing
for high level planning to be done based on the actual motion plans instead of
heuristic estimations of these motion plans. The resulting robot-trajectory pairs
from the behavior selection stage are fed through to the trajectory follower which
serves as the high level pose controller for each robot. Finally, the commands
from the trajectory follower are sent directly to the robots. This full setup can
be seen in Figure 2.

Fig. 1: High Level Software Architecture

The AI modules node has a few key attributes that the team abides by to
improve performance and ease of use from the perspective of software develop-
ment. One of these key attributes is that the AI module node is considered single
shot. That means that all state is stored in the ”world” object and used as input.
This provides the ability to fully recreate a single frame without any need for a
”warm-up” period during re-simulation as well as the ability to unit test specific
challenging world states. Special care is additionally applied to allow data to
flow only in one direction. This simplifies the assumptions in each module and
provides the ability to build ”contracts” between software module.

1.2 DAG(t) Behavior Representation

DAG(t) is our novel method to represent the behavior and trajectory planning
side of a multi-robot optimization problem in a tractable way. This method

2



Fig. 2: High Level AI Architecture

will replace the Play-Skill-Tactic and role based methods used in RoboCup SSL
previously.

Play-Skill-Tactic methods have significant pros and cons. It allows for a
strong system of prescribed behaviors between all the robots on the field with
flexibility around the number of robots, but there are high level difficulties sur-
rounding the coordination between tactics for a single play. Common issues in-
clude contention between a defense tactic and an offense tactic over who controls
the ball that must be manually delegated through the play itself. Additionally,
it is difficult to preemptively move robots into pass receive positions for future
passes besides the current one.

Role based methods also have significant pros and cons. Role based meth-
ods allow for dynamic behavior between all the available robots on the field,
especially when chaining behaviors together, like multiple one touch passes in a
row. It is difficult though to globally optimize the overall solution as each robot
is independently doing a greedy optimization to understand where they should

3



move to and how they should interact. This is in addition to more complicated
formations and structured behavior between multiple robots at once.

DAG(t) provides the best of both worlds. It allows for a globally optimal
solution that inherently ties the dependency between different behaviors over the
current and future behaviors in a sequence. DAG(t) is a directed acyclic graph
with multiple root nodes. Each node is a behavior that should be completed,
and each edge is a dependency. For example, in Figure 3, the ball needs to be
kicked first before the receiver can receive the ball, and then it must be received
before it can be kicked again. During the initial behavior planning stage, the
graph is built out with purely the planned behavior goals in mind. Additionally,
each node has a boolean representing if it’s required and a priority integer if
not required. The overall structure of the DAG is completely flexible and fully
defined by the user.

Fig. 3: DAG(t) Behavior Dependency View

After the initial planning, the DAG(t) is sent to the behavior realization
module to flesh out the robot assignments, relative timings, and the trajectory
taken. During this phase, each node will contain, in addition to the previous
attributes, an assigned robot id, start time of the trajectory, start time of the
action, and end time of the trajectory. The edges continue to represent the
dependencies. The nodes will be assigned robots in multiple passes in order of
priority/required descending. In the first pass, all required nodes will be assigned
roles greedily to optimize the time required to complete the required set of
behaviors. Each subsequent pass assigns robots to the next highest priority roles.
At this stage, it is easiest to view DAG(t) as a function of time and assigned
robot ID. In Figure 4, we can see the same DAG(t) with 3 available robots. The
4 required behavior nodes are split between the 3 robots, minimizing the total
time to complete the chain of required behaviors. Note that some of the required
nodes overlap in time which represent the time required to move into position
at the receive point before receiving the ball. While robots are not assigned to
the required behavior nodes, they are assigned to the other nodes in descending

4



priority. Note that the ”Right Defender Move” is never assigned due to the lack
of available robots.

Fig. 4: DAG(t) Time/Robot View

1.3 Motion Planning

Motion planning is highly critical to a successful team. Without a consistent
and smooth way to interact with the world, the performance of even the most
perfect AI will be highly limited. In this section, two approaches are detailed
that will improve our performance in this regard. The first is an iLQR based
approach to trajectory planning when interacting with an uncertain ball. The
second is a delay compensation method that improves the transition between
the old motion plan and a new re-plan.

iLQR Ball state estimation during the initial moments after a kick is highly un-
certain. By planning with this uncertainty in mind, it is possible to significantly
improve performance, especially in the case of passing and receiving. The high
level goal is to maximize the chance that the robot’s mouth moves through the
ball path within a ”reasonable” time frame. The ball uncertainty can be mod-
eled as a time varying PDF representing the ball XY location, with real-time
variance parameters coming directly from the vision filter. This can be imagined
as a set of samples with different initial conditions as no external forces will
act on the ball (besides friction). The robot’s mouth can be modeled as a line
segment mirroring the location of the physical dribbler where only interactions
with a ball from outward facing side are counted as valid. The number of sam-
ples moving through this modeled robot’s mouth over the entire trajectory can
be treated as a cost function for iLQR. By balancing this cost function with a
time to complete based component, we can allow iLQR to balance the time to
complete the kick/capture as quickly as possible while implicitly modeling the

5



ability to defer the capture to later in time to allow the estimation to stabilize
and improve the success rate at kicking/capturing the moving ball.

iLQR will also plan to avoid obstacles as well. By also modeling opponent
robot time-varying PDFs as well, we can implicitly model planning around op-
ponents more aggressively over short time periods and less aggressively over long
time periods. Over short time periods, the opponent PDFs will be highly cen-
tralized around one area spiking the cost of moving through that area. Over long
time periods, the PDFs will be highly distributed and will end up with lower
costs overall. The specific cost function will be an integration of the weighted
intersection of our team’s robot shape over the entire plan with the opponent’s
robot shape distributed over the predicted PDF. The weighting will weight high
PDF areas much more significantly than low level behaviors.

The two costs described here are highly non-linear forcing a line search based
iLQR implementation with a basic point mass robot model.

Immutable Duration There is a relatively significant time delay between the
action produced by each robot and the software measuring the action. If the
camera’s measurements are used, the AI will use the robot state from T-X where
T is current time and X is the delay. The plan from T-X to T is already sent
to the robot and being applied as actions. If the AI replans at this moment, the
robot will continue to execute the plan from T-X to T while starting the new
trajectory plan at the state from T-X, resulting in the T-X to T segment being
re-planned twice. Re-planning at slow speeds results in that X seconds being
wasted on unaccounted for motion and slow acceleration. This can be seen in
Figure 5.

Immutable Duration accounts for this time delay implicitly by locking in the
first X seconds of the plan from the last frame. This is done by clipping the
last trajectory from T until T + X. The new trajectory is planned starting at
state T + X and concatenated onto the clipped trajectory from last frame. The
resulting trajectory is used as that robot’s trajectory this frame. The overall
results during a re-plan can be seen in Figure 6. Note the initial planning state
is now based off the previous frame’s trajectory and not the vision’s estimation.
While not ideal, this results in performance requirements from the trajectory
follower controller as the AI will make explicit assumptions regarding controller
performance.

1.4 Vision Filter

It is critical to have an accurate estimation of the ball to accurately receive the
ball and respond to shots. This is a challenging problem due to the ball’s highly
non-linear switched system when taking into account the ability to be kicked.
Our solution was a per-camera Multiple Track Tracker where each track is an
Interacting Multiple Model (IMM) filter using a Kalman Filter internally. Each
motion model in the IMM filter represents a completely different motion of the
ball. The two main motion based models represent the two different friction val-
ues associated with the ball during a kick: sliding with a backspin, and rolling

6



Fig. 5: Re-planning without Immutable Duration

Fig. 6: Re-planning with Immutable Duration

along the ground. In addition, there is an explicit model that represents bouncing
off a robot with a simplified circle collision geometry. Finally, kicks are repre-
sented as short duration modes with a constant velocity at slow, medium, and
fast speeds in the direction of the nearest robot heading. During execution, the
transition matrix is dynamically varied between all of the states, optimizing out
modes where there is no robot near the ball (there cannot be a kick or bounce).
Each frame, using the previous state, dynamic transition matrix, and the prob-
ability that the sample comes from a distribution acted upon by that specific
mode, a probability for each mode can be generated. Based on that probability,
a weighted average is used to generate the most likely ball state. By specifically
modelling each motion model of the ball, we can tighten the process noise asso-
ciated with each model allowing for a much more accurate estimation compared
to the single model approach. Additionally, we can implicitly detect when kicks
and bounces happen based on the mode probability. The motion models, their
layperson description, and their time varying probability description are in table
1.

The IMM is also applied to the robot estimation. There are 3 main motion
models applied to the robots. The basic motion model is a constant velocity
model that is a catch all model. The other two are max acceleration towards the
ball, and max acceleration away from the ball. These two models account for
robots accelerating towards the ball at the beginning of their motion plan and
the deceleration at the end of the plan as they try to interact with the ball. The
motion models, their layperson description, and their time varying probability
description are in table 2.

7



Motion Model Name Description Activation Period

Rolling Friction Default model with
rolling friction

All times except when
being acted upon

Sliding Friction Sliding friction due to
ball backspin right after
dribbling kick

Directly after a kick
happens

Slow/Medium/Fast Kick Constant velocity in
direction of heading of
nearest robot

Constant probability
only when ball is near
mouth of opponent
robot

Bounce Modified velocity vector
based on location ball
intersects with robot

High probability when
ball is near robot not in
mouth

Table 1: Ball Motion Models

Motion Model Name Description Activation Period

0 acceleration Default model with
constant velocity

All times with moderate
probability

Max acceleration
towards ball

Initial acceleration of
motion plan towards ball

Low probability always

Max acceleration away
from ball

Final deceleration of
motion plan towards ball

Low probability always

Table 2: Robot Motion Models

8



2 Controls

At the heart of our controller lies a robust model of the robot’s kinematics and
dynamics. The kinematics model relates the four wheel velocities about their
axes to the motion of the robot both in the robot’s coordinate frame and the
world frame of the field. The kinematics model assumes rolling contact of the
four wheels along the tangential wheel path, and thus we can easily compute the
body velocities (in either world or robot frame) using the Jacobian of the robot.

To obtain the dynamics model of the robot, we applied the method of La-
grange to derive the robots equations of motion. We chose this method as
there are in essence five rigid bodies in motion—the robot chassis, and the four
wheels—which each affect the overall robot dynamics. We express our dynamics
model in the standard form of the robot equations of motion [2, 3].

3 Platform

3.1 Electrical Architecture

Control Board The control board handles much of the operating logic for
the robot, including the processing of commands provided through the radio
communication with the host computer, conversion of body-level parameters to
wheel-level parameters, kick control, and self-diagnostics. The main microcon-
troller is an STM32H723, which is based on an ARM Cortex-M7 core. It was
chosen for its high pin count, high operating clock frequency, hardware floating
point support, and plentiful low-level communication bus peripherals[4].

The control board also has a time-delayed power switch that allows the robot
to conduct a safe shutdown process before completely removing power to all of
its systems. Immediately upon the switch being throw to the off position, a 3
second countdown begins. If the system has completed its shutdown procedure
prior to this time, it can send a signal to immediately cut off the power. This is
especially helpful for subsystems such as the SD card writing process to complete
its logging and the kicker board to discharge its capacitors prior to power loss.

The STSPIN32F0B drives the each of the four drive motors and the dribbler
motor[5]. The chip combines an ARM Cortex-M0 microcontroller with three half-
bridge drivers. This integration significantly simplifies the overall architecture,
as all of the motor driving logic, timers, and gate driving circuitry are contained
within a single chip. These microcontrollers also contain a UART interface that
is used to receive velocity commands and transmit back telemetry data.

Kicker Board The kicker board employs a flyback converter to charge a bank
of capacitors to 250V while maintaining DC isolation. Since the load-side ef-
fectively shorts out the positive side of the capacitor to ground through a low
DC resistance solenoid, maintaining DC isolation is a significant factor. The two
grounds are, however, still connected such that the solenoid control transistor
can be switched without any additional complexity.

9



Optical Flow Board To aid in relative localization, an optical flow system
was implemented. It uses two identical PWM3389DM optical mouse sensors [6].
Each sensor gives a (∆X,∆Y ) relative to itself in counts per inch. Based on the
work covered in [7], two sensors are required for full robot kinematics, individual
orientation of the sensors are irrelevant, and they should be placed as far from
the center at opposite sides of the robot to maximize the sensor readings. The
sensors are read by an STM32F429 [8], which calculates the change in ∆X, ∆Y ,
∆θ in the reference frame of the robot based on the work in [9]. This is sent back
to the control board for improving velocity estimates.

Radio The team considered multiple radios and multiple radio technologies
as candidates for the robot. To aid with selection, the team defined high level
requirements, and in order of necessity they are listed below:

1. Data transfer rate >50kb/s
2. 3 sigma one-way transmission latency <17ms
3. Simple and universal local communication interface
4. Ability to debug transmission reliability in-situ
5. High number of channels or bands to deconflict with other teams
6. Data transfer rate >3Mb/s
7. Sufficient extensibility to explore league standardization
8. RF emission legality in various countries and regions

Specific technologies are highlighted in Figure 7.

Technology Rating Reasoning

Bluetooth ® −−− League Prohibited

2.4GHz Wi-Fi −− Heavily discouraged by League

2.4GHz ISM Radio − Wi-Fi Interference/Congestion

Ultra Wide Band − Poor indoor/large venue performance
[10][11]

900MHz +
Need for application layer, low extensibil-
ity, international legality

5GHz Wi-Fi ++ Cost, costly debug tools

Fig. 7: Radio Technology Comparison

After considering the mentioned options, the team decided to evaluate 5GHz
Wi-Fi. The cost concerns were small compared to purchases like motors, and
radio reliability is critical. The team is hoping that advanced 5GHz Wi-Fi al-
gorithms, and high channel availability will allow the robots to leverage RF
technology far more sophisticated than raw ISM band radios. Additionally, with
TCP/IP or UDP/IP as a provided base, little additional consideration would
need to be given to any low level radio communication or radio parameter tun-
ing.

10



The team selected the Odin-w260 Wi-Fi SoM for evaluation[12]. The cost per
module is 45 USD. It has UART and Ethernet RMII interfaces. The fine details
of the communication stack (e.g. TCP/IP, UDP) are abstracted away from the
user. It supports multicast, making some aspects of network, robot, and conflict
discovery much easier. It also has higher level communication options (MQTT,
https) which may assist with future security and firmware update ambitions. It
was paired with a Unifi Dream Router, which has a typical cost of around 200
USD[13].

The team conducted a reliability and performance assessment. Packet trans-
mission was analyzed round-trip (computer → robot → computer), at a 60Hz
rate, for approximately 8 hours (1.6 million packets), in a congested Wi-Fi space.
The 5GHz Wi-Fi channel was pinned to one of the 16 channels available glob-
ally. During a 5GHz spectrum sweep, 77 other networks were identified in the
5GHz network sweep, so the team considered the RF environment “crowded.”
Packets not received after 1 second were considered permanently lost. Latency
values were calculated by subtracting baud-rate transmission time (at 115200
baud) in an attempt to isolate actual RF transmission delay, and then halving
the result. The test microcontroller was a ARM Cortex-M3, with any delays
during microcontroller signaling assumed to be negligible.

Our preliminary results are shown in Figure 8 and Figure 9. The test showed
we were slightly short of the target 3-sigma latency metric, but given a positive
result, strong capabilities for other metrics, and limited time, the team decided
to proceed with this technology.

There are clear short comings in the data, notably odd peaks around 2.5ms
and 7ms latencies. The host computer tests were run onWindows 10 and Python,
which have known benchmarking quality issues. The team will improve and re-
explore these tests in the near future, and re-report updated results.

3.2 Embedded Rust Firmware

Based on past experiences with subtle run-time stability bugs with embedded
C/C++ and FreeRTOS, the team was looking for tools and approaches to mit-
igate classes of bugs and reduce the surface area for nascent errors. Recent de-
velopment effort has picked up on Rust for Embedded systems, especially ST
Microelectronics Cortex-M systems. Team members have experience with user-
space Rust on several professional and personal projects, so the decision was
made to use Rust for the STM32H7 primary microcontroller. Below is an em-
pirical and subjective assessment of our experience so far.

As a foreword, the bulk of the broader community uses and develops Em-
bassy[14]. New embedded users, should start there. Due to lack of features, we
do not recommend starting with stm32-rs ecosystem[15].

There are key benefits to the Rust ecosystem. Notably, the packaging and
build system Cargo can guarantee source equivalent package inputs, readily fetch
from online archives, and integrate with tools like defmt (for string processing)
and probe-run (for richer debugging). We’ve found this environment to be sig-
nificantly nicer and farther ahead than modern C/C++ equivalents. Overall,

11



Fig. 8: One-way Packet Latency Data

Property Value

Total Packets Sent 1.6M

On-Time Packets 1561739 (97.61%, z=2.26)

Late Packets (latency >17ms) 38009 (2.376%)

Lost Packets (presumed, latency >1s) 252 (0.0157%)

Latency Mean 1.511ms

Latency Std. Dev. 5.929ms

Fig. 9: radio performance summary

12



performance is at or near C code, and binary size is acceptable as long as you
can fit a hardware abstraction layer (HAL) equivalent to a C HAL of similar
complexity[16]. Additionally, the Rust compiler will enforce at compile time, in
safe code, the absence of memory allocation/deallocation bugs, buffer misman-
agement bugs, type conversion bugs, and multi-threading bugs[17]. For niche
applications such as this, the use of “unsafe” Rust will be necessary, where the
compiler cannot enforce safety. In these instances, the compiler tracks the pre-
and post- condition contractual obligations of the function, and assumes correct-
ness. If bugs of the aforementioned classes are found, the designer knows they
must be in an unsafe block, greatly narrowing the search for the issue.

As with any new technologies, the team encountered drawbacks as well. It’s
well established in the Rust community that the learning curve for the language
is steep. The team agrees with this assessment, especially when compounded
with a very new specification for async on embedded systems. The team paid
a noticeable price in development time for the aforementioned benefits. Most
of the deep challenges were related to core system setup and bootstrapping
a few key items. After core setup, the subjective development experience was
excellent. Additionally, there are edge cases in unsupported parts (such as the
STM32H7A3) making easy hardware swaps (due to part availability) slightly
more challenging.

In summary, at this time we do not recommend the use of embedded Rust
by robotics students, unless they want their effort focused on embedded reli-
ability over robotics concepts. The team recommends any group interested in
embedded Rust have some previous Rust experience, extensive experience in C,
experience porting an embedded standard library such as newlib, knowledge
of preemptive scheduler context switching mechanisms, and experience with the
low level architecture of the supported chip (Nordic NRF or ST Microelectronics
Cortex-M).

3.3 Mechanical Platform

Our robot platform is a simple, modular, and layered design. The lowest layer
houses drive modules, the kicker, and the dribbler. The middle layer contains
our battery, a Zippy Compact 2700mAh 4S 25C Lipo Pack [18]. The top layer
is made of our electronics stack.

We leveraged multiple techniques for manufacturing our robots. Custom alu-
minum 5052 sheet parts were ordered from SendCutSend, an online laser cutting
service. Some light post-processing was required, primarily for holes on the sides
of parts. Most of the other custom parts were 3D printed in PLA.

Note that while our prototype electronics are too wide and tall to fit within
the legal size constraints for the RoboCup SSL competition, the core parts of our
mechanical design do fit within the limits, as shown in Figure 10b. This includes
our drive system, kicker, dribbler, and battery compartment. We are working on
condensing our prototype electronics into just two PCBs, such that they will fit
within the legal competition bounds in time for this year’s event.

13



(a) Prototype robot design
(b) Mechanical core design fits within
the legal bounds

Fig. 10: Chassis Design

(a) assembled drive module (b) exploded view of drive module

Fig. 11: our drive module design

14



Drive System Every robot features four identical drive modules, shown in
Figure 11, including a drive motor, encoder, and wheel. Our wheels are pur-
chased from GTF Robots. They have an effective diameter of 50mm and have
eighteen 8mm diameter rollers. Our drive motors are Nanotec DF45M024053-A2
motors with specifications as shown in Table 12 [19]. Our encoders are based on
AS5047P magnetic encoder ICs [20]. All of these components are mounted to a
3D printed plate with heat-set threaded inserts for securing to the bottom and
middle aluminum plates.

Properties Drive Motor Dribbler Motor

Model Nanotec DF45M024053-A2 Moons ECU22048H24

Rated voltage 24 V 24 V

Rated speed 5260 RPM 17000 RPM

Fig. 12: Motor Specifications

(a) Assembled dribbler
module

(b) Exploded view of drib-
bler module

(c) One half of our two-
part dribbler roller mold

Fig. 13: Dribbler Module Design and the Roller Mold

Dribbler Our prototype dribbler, shown in Figure 13, is composed of two ver-
tical aluminum plates supporting the motor and dribbler roller and a 3D printed
bottom piece. This bottom piece provides a chamfered edge for the ball to roll
smoothly against. The dribbler motor is a Moons ECU22048H24, with specifica-
tions shown in Table 12 [21]. The motor is geared 1:1 with three matching gears
to the roller axle. The central, idling gear is bored larger to fit bearings.

The rubber dribbler roller is molded onto an aluminum sleeve, which is se-
cured to the axle with a set screw. To form the rubber roller, we 3D printed a
two-part mold, shown in Figure 13c that fits the aluminum sleeve and dribbler

15



axle for alignment. The two mold halves are bolted together and the two holes
on the top are used to pour in the rubber and vent out air. We used Smooth-On
Vytaflex 30 Urethane for the roller [22].

We’ve found with this dribbler design that the ball bounces in and out of
the robot’s control frequently. This was expected from our past experience, and
we are experimenting with a hinged dribbler assembly that leverages foam and
gravity to dampen the collision between the ball and the dribbler.

Fig. 14: Kicker Assembly

Kicker Our prototype kicker is an off-the-shelf solenoid, mounted with a folded
sheet aluminum bracket, with an aluminum ”boot” attached to the plunger. The
solenoid is an S-22-150-HF from Magnetic Sensor Systems [23]. We modified the
plunger to thread into a hole on our aluminum boot part, which provides a
wide, flat contact surface for kicking the ball. To constrain the plunger and boot
from rotating within the solenoid, the boot rides along rails that are part of the
bottom piece of the dribbler assembly. These rails and the boot also have tapped
holes for securing an elastic band to provide a return force for the solenoid.

4 Open Source

Mechanical, electrical, firmware, software, and control and circuit models are
published on our GitHub page and licensed for broad use[24].

References

1. Esteve Fernandez, Tully Foote, William Woodall, Dirk Thomas ROSCon Chicago.
Next-generation ROS: Building on DDS. 2014.

2. Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A mathematical introduc-
tion to robotic manipulation. 2017.

16



3. Kevin Lynch and Frank Park. Book-Modern Robotics. Number May. 2006.
4. ST Microelectronics. STM32H723/733, 2022.
5. ST Microelectronics. Advanced single shunt BLDC controller with embedded

STM32 MCU, 2022.
6. Pixart Imaging Inc. PMW3389DM-T3QU, 2022.
7. Mauro Cimino and Prabhakar R. Pagilla. Location of optical mouse sensors on

mobile robots for odometry. In 2010 IEEE International Conference on Robotics
and Automation, pages 5429–5434, 2010.

8. ST Microelectronics. STM32F429/439, 2022.
9. A. Bonarini, M. Matteucci, and M. Restelli. A kinematic-independent dead-

reckoning sensor for indoor mobile robotics. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
volume 4, pages 3750–3755 vol.4, 2004.

10. RoboJackets RoboCup SSL Team. RoboJackets 2019 Team Description Paper.
Technical report, Georgia Institute of Technology, 2019.

11. RoboJackets RoboCup SSL Team. RoboJackets 2020 Team Description Paper.
Technical report, Georgia Institute of Technology, 2020.

12. u blox. ODIN-W2 series (u-connect) - Stand-alone IoT gateway modules with
Wi-Fi and Bluetooth , 2022.

13. Ubiquiti Unifi. Dream Router, 2022.
14. embassy development team. Embassy, 2022.
15. stm32-rs devleopment team. stm32-rs, 2022.
16. Rushabh Gaherwar. Which is faster: Rust or c? let’s find out who is the usain bolt

of programming world. 2020.
17. Ralf Jung. Understanding and Evolving the Rust Programming Language. PhD

thesis, Universität des Saarlandes, 2020.
18. HobbyKing. ZIPPY Compact 2700mAh 4S 25C Lipo Pack, 2022.
19. Nanotec Electronic U.S. Inc. DF45 – BRUSHLESS DC FLAT MOTOR, 2022.
20. ams OSRAM AG. AS5047P High-Resolution Position Sensor, 2022.
21. MOONS’. ECU22048H24-S101, 2022.
22. Smooth-On. VytaFlex™ 30, 2022.
23. Magnetic Sensor Systems. Tubular Push Type Solenoid, 2023.
24. Members of the A-Team. SSL-A-Team GitHub Organization, 2022.

17


