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Abstract. This paper describes the recent work that has been done by
the Immortals Robotics Team for the upcoming RoboCup 2023 compe-
tition in Bordeaux, France.
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1 Introduction

The Immortals Small Size League team was founded in 2008 and participated for
the first time in RoboCup 2009 in Graz, and later won several awards, including
2nd place in RoboCup 2011 in Istanbul, and 1st place in RoboCup Asia Pacific
2018 in Kish. The team currently consists of computer and electrical engineers.

There have been some changes to the mechanics and electronics of our robots
in the last few years. The process can be seen in the previous TDPs and ETDPs
[2], [1].

This year, the team focused on modernizing the electronics and software
architecture. Efforts were also made to address issues observed during recent
competitions, including RoboCup 2018 in Montréal. In addition to the stan-
dard robot (Fig. 1a), there is a 3D-printed prototype robot (Fig. 1b), which
was presented in 2018 and has been improved and tested since then. The goal
is to achieve a modular, flexible, and reliable platform that would reduce the
maintenance and future development costs of the robots.

It is worth mentioning that we will be publishing our designs and software
on our GitHub page [5] shortly after the competition is over.

2 Mechanics

Due to the optimal design of the previous robots, the mechanical design team
decided not to overhaul the entire system, but rather to modify design details to
improve the manufacturability and durability of the parts. In addition, recent ad-
vances in additive manufacturing techniques, which have resulted in more accu-
rate and reliable 3D-printed parts, are driving our developments toward broader
use of these elements and the replacement of several mechanical parts currently
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(a) Standard (b) 3D-printed

Fig. 1: Immortals current robots.

manufactured using conventional methods, such as turning and wire EDM, with
additively manufactured parts to reduce costs and increase manufacturing and
maintenance speeds.

The manufacturing companies are consulted on the technical drawings of the
revised design, and most of the manufacturing work for the new series of robots
has been outsourced.

3 Electronics

Our current electronics were designed in 2010 and have been in use since. In
2018, changes were made to them to modernize the designs and replace the old
parts with their new counterparts [3]. We tested them during RoboCup 2018,
and the results show a solid improvement in reliability while reducing production
costs. Currently, all robots use this design.

This year, we’re planning to redesign all of our electronics from scratch to
reflect the latest developments in the league and also in the industry. The main
goals are:

• reliability
• expandability
• being more competitive

The new architecture can be seen in Fig. 2. We also switched from the old
4-cell batteries to 6-cell batteries this year. The older batteries were causing
the brushless DC (BLDC) motors to run below their rated voltage. But going
to a higher voltage was not possible with our previous electronics due to some
limitations in the switching power supply we used to generate 5V.
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Fig. 2: The new electronics architecture

It should be mentioned that at the time of this writing, the design work is
still ongoing and we don’t have the final boards manufactured. We hope to equip
at least half of our robots with the new parts in RoboCup 2023.

3.1 Main board

The current main board used by the team was designed in 2010 and has been
used in its original form ever since, except for minor changes. It uses a Xilinx
Spartan3 FPGA as the main processor. A soft processor, TASKING TSK3000,
is used inside the FPGA to handle more sequential logic, while the FPGA itself
is used to read encoders, drive BLDC motors, drive the boost converter, etc. We
later added an nRF52832 SoC to handle wireless communication, control the
I/O switches and LEDs, and read the current sensors [3].

While this design is flexible and comparatively cheap to produce, it has shown
its age in recent years. The main drawbacks are:

• The TSK3000 runs at about 36 MHz and is far too limited in its cur-
rent configuration to develop more sophisticated local processing and mo-
tion planning. Some effort has been made in the past to move parts of the
performance-critical C code to the logic gates, but this would make the im-
plementation more difficult to modify and extend. On the other hand, the
debugging workflow was too restrictive, and any changes to the code required
a complete rebuild of the FPGA project. All of these factors resulted in the
team using pretty much the same framework for several years without being
able to make major changes.

• BLDC motor commutation is a simple 6-step trapezoidal commutation. It
is easy to implement, but is inefficient and causes high torque ripples. Im-
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plementing a more sophisticated method, such as Field Oriented Control,
requires massive changes to the PCB.

• We use the nRF24L01 chip for wireless communications, with a custom pay-
load layout on top of its Enhanced ShockBurst (ESB) protocol. This gives
us a lot of flexibility, but because it is a low-level protocol, we have to add
any higher-level functionality we need, such as discovery.

• The waveform needed to drive the boost converter in the kicking board is
generated by the FPGA. This meant that we were free to change it to suit
our needs, but in practice, it was considered too fragile.

• There are no current protections on the board. Any malfunction in the board
itself or in any other part of the robot, such as a stuck wheel, will cause
damage to the parts. This greatly reduces reliability, increases maintenance
costs, and causes damage to the battery.

To resolve these issues the work started on designing a new main board from
scratch. The main features are:

• Raspberry Pi Compute Module (CM) 4 as the local compute unit on the
robot. We intend to move parts of the skill execution, data fusion and pre-
diction, and motion planning to it.

• Compute Module’s 5GHz WiFi as the wireless communication link. This will
greatly increase the bandwidth and capabilities of the link and allow us to
add robots as regular links to our software stack. This will allow them to
receive world state and the AI output necessary to perform local skills.
The latency characteristics of using WiFi instead of a low-level protocol in
the lab environment were satisfactory. Using the standard PCB antenna at
a distance of 20m from the access point, we were able to achieve a latency
of about 2ms with a data loss of about %3. The latency requirements will
be more relaxed after moving more processing to the robot’s local processor.
However, we are still considering adding a separate nRF chip for latency-
sensitive processing if the new approach causes problems.

• CAN protocol to connect the main board to external boards, including the
kicking board, motor drivers, proximity sensors, and battery monitoring.
This will give us a more robust and flexible base to build on.

3.2 Motor driver

In past competitions, the motor control circuitry was one of the most common
points of failure for the robot. Since they were on the same PCB, repairing them
would require a complete reflow of the broken parts. In more severe cases, such
as when the traces are damaged, especially on the inner layers, this could mean
that the board becomes irreparable.
This year, we decided to design separate modular motor driver boards that will
be placed on the main board for each motor. This will greatly improve our ability
to repair robots if one of the drivers fails. It would also make it easier to develop
the main board and the motor drivers separately.
This new driving board is based on:
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• A dedicated BLDC motor driver IC, TMC4671. It implements Field Oriented
Control (FOC) for BLDC motors and includes various control methods. This
offloads the local motor control functionality from the main processor to
dedicated hardware, which is more reliable in terms of latency. It has an
SPI interface to receive both configuration and commands and to send back
sensor data including speed and position.

• A power MOSFET driver IC, TMC6200. It drives the MOSFETs and senses
the motor currents needed for the FOC algorithm. It also includes a fault
detection mechanism.

• A small ARM processor, STM32F042G6Ux, acts as a CAN client link to the
main processor. It communicates with both the TMC4671 and the TMC6200
via SPI and also reads the current sensor.

3.3 Kicking board

In previous years, we used a boost converter driven by the FPGA from the main
board. There were also two discharge pins and one charge pin connected directly
to the FPGA’s IO pins. These were major problems with this design both in
terms of reliability and charge performance.

(a) top-view (b) bottom-view

Fig. 3: The new kicking board design

This year we redesigned the kicking board (Fig. 3) with the following features:

• Like other teams in the league [4], it uses a dedicated LT3570 flyback ca-
pacitor charger IC.This simplifies the design while improving performance
and reliability. We use the DA2034 transformer and the BSC109N10NS3G
MOSFET for this circuit.

• A STM32F042G6Ux MCU is used on the board to handle the CAN protocol
to the main board and to control the charger IC, variable resistors, and
discharge IGBTs.
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• A high-power resistor network consisting of three 2.4K 3W resistors is added
to the board to discharge the capacitors when needed without using the
kicker magnets. The STN3N40K3 MOSFET driven by a ZXGD3009E6 is
used to control the discharge.

• Two IGB50N60T IGBTs driven by a single IX4427MTR are used to dis-
charge the capacitors to the kicking magnets.

• An MCP4562 variable resistor to set the target voltage of the flyback con-
verter. This allows us to change the voltage by simply changing a configura-
tion variable in the main software and communicating it down to the kicking
board.

4 Software

Our current software stack was developed in C++ in 2010 and has seen several
additions and improvements over the years. This has resulted in a high perfor-
mance and robust software but at the same time a difficult-to-maintain code
base that is too fragile for the new changes.

This year the main focuses are to make our software:

1. more robust
2. easier to read and understand
3. faster to iterate and extend
4. more competitive

In the following sections, we will describe the efforts made to reach these goals.

4.1 Robustness

Continuous integration This year, we created a continuous integration (CI)
system based on GitHub workflows. It builds the software, performs style checks,
runs automated unit tests, and optionally publishes the result as a release to
GitHub. This is an essential part of our development process, as it provides
several important benefits that contribute to the quality and reliability of our
software.

It helps ensure that the software can be built across environments with-
out problems. This is particularly important as we currently target Windows
(MSVC and Clang), Ubuntu (GCC and Clang), and macOS (Clang) with a
collection of library dependencies as will be described in 4.1. The system uses
the same CMake presets that we use locally to ensure that the software is built
in a consistent and reproducible way.

It also performs style checks described in 4.2 using clang-format and clang-
tidy with the same configurations we use in our local integrated development
environments (IDEs). This can help enforce a consistent coding style across the
codebase, which can make the code easier to read and maintain.

Another important aspect of the pipeline is the ability to run automated
unit tests developed with GoogleTest [11]. This can help identify problems and
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regressions in the software early in the development process. At the time of
writing, the code coverage of these tests is not adequate and we plan to improve
this over time. We also plan to introduce other ways of automated testing other
than unit tests in the future, such as testing our tracker with known input and
output data, and testing our defensive marking algorithm with situations from
the past competitions.

We also have an automatic release submission pipeline when a tag starting
with v , e.g. v.1.0.0 is pushed to our repositories. This automatically packages
the resulting artifacts, creates a release on GitHub, and publishes the artifact
along with the source code and data used to build it. Even this TDP was created
using this mechanism.

Third-party libraries This year we started using several third-party libraries
for parts of our software:

• BehaviorTree.CPP [13] for Behavior Trees
• Asio [14] for networking
• Quill [15] for logging
• toml++ [16] for configuration files
• Eigen [17] for linear algebra
• homog2d [18] for 2D math

Using these libraries over our custom solutions can help improve code quality,
both in terms of robustness and ease of use.

These open-source projects have a proven track record and have been exten-
sively reviewed and stabilized over time. This means they are more reliable than
custom-built solutions and better suited to handle common tasks with reasonable
performance and reliability.

They also often come with a broader set of features that have detailed docu-
mentation, making them easier to integrate and use. This allows us to focus on
implementing the core logic without worrying about the underlying infrastruc-
ture. This results in more readable code that is less prone to bugs.

To make it easier to integrate other libraries, we started using a C++ depen-
dency manager, vcpkg [12]. This simplifies the installation and maintenance of
third-party libraries, ensures compatibility between them, and improves repro-
ducibility on different local machines and in the CI pipeline.

Improved debugging One of the main weaknesses of our software in the pre-
vious competition was the lack of understanding of why the software and robots
were behaving the way they were and what might be causing the problems we
were seeing. We knew that by providing more detailed and informative logs, we
could gain a better understanding, which could lead to faster and more effective
debugging and troubleshooting.

This year, we improved our logging system with an extensible system that
can output to multiple outputs, including the standard output, file, and over
the network. This allows us to record the logs and later analyze any part of the
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runtime to better understand the behavior of the system and narrow down the
problem to a specific point in time.

We have also expanded the use of our visualization GUI. Having a graph-
ical representation of the internals of different algorithms, as well as real-time
sensory data from the robots, help us better understand how different parts of
the software work and make more informed decisions about how to improve the
robots’ performance and troubleshoot problems. The GUI also provides a more
intuitive and user-friendly way to interact with the software and make configu-
ration changes. Fig. 4 shows an example of visualizing the internals of our path
planning.

Fig. 4: A demonstration of the ERRT path plan in the visualization GUI.

The GUI is implemented in Python and receives the visualization data over
the network. This means that it can be run on any computer in the same network
and receive the data from any node in the system, including the tracker, the
soccer ball, and even the robots’ embedded firmware.

4.2 Readability

Architecture Our current software is a single monolithic application that han-
dles world state estimation, AI, and robot motion planning. This has the ad-
vantage of allowing us to easily change the flow of data between different parts.
But it forces us to implement everything in C++ to produce a single application
that runs on a single machine. Another side effect of such a monolithic design
was that it encouraged more coupling between the soccer and vision parts of the
software, making it harder to make changes to either.
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Fig. 5: The new software architecture

The goal this year is to refactor the code base into separate parts that are
connected via the network as shown in Fig. 5. This will allow us to move the
lower-level motion planning and skill execution to the robot’s local processor
and develop the graphical user interface (GUI) using other technologies.

At the time of writing, these efforts are still ongoing, but we are confident
that we will be able to transition to the new stack in time for RoboCup 2023.

Coding standards One of the most important observations in the past has
been the complexity of the C++ language and the large number of problems
that can arise when it is used incorrectly. This is especially important to us
because the code is typically developed by students who do not have extensive
experience with the language.

To address this issue, we have chosen a coding standard [6] and agreed on a
set of style and naming conventions to be used throughout the code base. These
will improve readability and maintainability, and promote consistency. These
style checks are implemented as clang-tidy and clang-format configurations
which can be used both locally within the IDEs, and as an automated gate in our
CI pipeline as described in 4.1 when creating a pull-request to the main branch.

As a first step in implementing the coding standard, we have begun to move
the code base to a more modern C++ revision (C++20 at the time of this
writing). It includes as an example moving away from the use of raw pointers in
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favor of smart pointers. This can help simplify memory management, improve
code clarity and maintainability, and reduce the risk of errors related to object
ownership and lifetime.

We are also in the process of making the code base warning-free and treating
the new warnings as bugs. These warnings are issued by the compiler when it
detects potential problems in the code that could lead to bugs or undefined
behavior based on the C++ Core Guidelines [7] or other references. Treating
them as errors force developers to address them and fix potential problems early
in the development process, which can help prevent the accumulation of technical
debt and reduce the risk of introducing bugs later.

4.3 Extensibility

Issues with Finite-State Machines Our current AI is based on finite-state
machines (FSMs) [1]. While this structure made it easier to decompose robot
behavior into distinct states and implement each event as a transition between
two states, it made it difficult to reuse states and increased the number of tran-
sitions exponentially. It also became very difficult to debug or extend the FSM
to handle new behaviors and implement fallback tactics.

When implementing each state of an FSM, the developer must consider the
other states and how they will transition to the current state and how it will
transition to the next state. For a state machine with only a few states, this is
easier to handle. However, considering the number of robots and the different
tactics that the opponent can use, the developer is required to implement a
large number of states to handle every possible situation in the FSM. This can
be a significant challenge for the developer to implement all the states and their
relationships.

Behavior trees To overcome these problems, we switched to Behavior Trees
(BT) this year. BTs are hierarchical structures composed of nodes representing
actions, conditions, or other behaviors, and their connections define the order
in which those behaviors should be executed. BT can be used to develop AI for
soccer-playing robots by providing a framework for creating complex decision-
making algorithms that can handle multiple goals and constraints.

Table 1 shows the low-level behaviors that can be used as building blocks to
create more complex behaviors. They are self-contained and easy to understand,
so they can be developed and tested once, which is much less time-consuming
than maintaining complex and interconnected systems developed together.

Fig. 6 shows an example BT that is built upon the lower-level behaviors
described earlier in table 1. Note that this tree is stored as an XML file that
the software can load and reload at runtime, without a need to recompile. This
greatly improves the iteration times.

By using BTs in the development of our AI, we can create flexible, modular,
and easy-to-maintain decision-making algorithms that can handle the complexity
and variability of the games. The hierarchical structure of the BT also allows
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Table 1: Low-level behaviors.
Behavior Description

Navigate(destination, orientation, profile) Navigate the robot to destination with
the provided velocity profile while
avoiding obstacles.

Chip(power) Request a chip kick with the passed
power to be executed when the ball is
detected.

Direct(power) Request a direct kick with the passed
power to be executed when the ball is
detected.

Obstacles(situation) Returns obstacles for the robot for a
given situation in the game.

Face(point) Returns an orientation so that the
robot faces the passed point.

Mark(opponent) Returns the defensive marking position
for the given opponent that is either be-
tween our goal and the opponent, or the
ball and the opponent.

FetchBall(point) Returns the position on line which the
ball is moving on and most close to the
point, and an orientation to fetch the
ball.

OneTouch(point, target) Returns the position on line which the
ball is moving on and most close to the
point, and an orientation to kick the
ball towards the target.

Fig. 6: A sample Behavior Tree for ball placement.
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for a high degree of customization and adaptability, making it easier for us to
adjust our strategy based on the specific conditions of each game.

Config system Previously, all parameters were hard-coded into the C++ code.
This made it time-consuming to change anything, resulting in unacceptably long
iteration times. Using a config file instead makes it easier to maintain and update
the values, as they can be changed in a central location instead of having to
search for each instance of the hard-coded value. It also makes the code more
flexible and reusable, since you can easily switch between different configurations
without having to change the code itself. This also makes it easier to test different
scenarios without restarting the system.

This year we started using toml [8] as our configuration format, along with
a json schema [9] that we generate based on our C++ config structure to
validate the toml file in both text editors and as a CI step. This schema is also
used by our GUI to create a persistent config editor with the correct types,
names, and defaults, even in the absence of a config file. The system uses a
layered architecture; multiple toml configs, both from disk files and from the
network, are fed into the system, each with a priority field. The configuration
system then returns a single compiled configuration that all nodes in the system
can use (Fig. 5). The system can also prompt the nodes in the system to persist
the received config.

Improving build time One of the common pitfalls of any C++ code base is
the time it takes to build the project. This problem became more apparent as
our software grew in size and dependencies. Before doing any optimizations, it
took about 15 minutes to do a complete rebuild on a modern desktop CPU with
6 physical and 12 logical processors.

As a first step, we enabled multi-threaded compilation with /MP flag on
MSVC and using Ninja [10] instead of make. This greatly reduced the build
time to about 3 minutes. But it was still unacceptable for the iteration times we
were looking for.

We then used the -ftime-trace flag with Clang to see where the time is spent
during the build. As shown in Fig. 7, most of the time is spent in the frontend,
in this example about %96 of it. Upon closer inspection, it is clear that this
is caused by excessive use of include files, which the compiler frontend has to
process multiple times.

To solve this problem, we started using unity build, so that the headers are
processed once for a set of source files. This resulted in a massive reduction in
build times. A full rebuild took about 20 seconds on the same machine. But
touching a single source file still triggered the compilation of a set of files, which
is inefficient.

The last step to improve build time was to use pre-compiled header (PCH).
All header files from the 3rd party libraries, and the common code used by
both vision and soccer modules except the generated protobuf header files are
pre-compiled. This is then used by the compiler when compiling the vision and
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Fig. 7: The output of the -ftime-trace for one of the source files.

soccer modules. This way, the time to do a full rebuild is almost the same as
the unity build. But the time to build the modules when only a few source files
are changed became about 2 seconds, which shows a reduction of about %80
compared to the unity build.

We currently use PCH locally, and unity builds together with PCH for our
CI pipeline.

4.4 Competitiveness

As mentioned earlier, the main focus this year has been to improve the foun-
dation of our code base to make it easier to build more competitive software
on top of it. We expect to see more soccer-related development in the coming
years. The following sections describe the work we expect to be done in time for
RoboCup 2023.

Local processing on robots Currently, we run all the behaviors in the main
software on a computer, and then send the target commands in the form of global
target velocity, orientation, and kick commands to the robots. The robot’s local
processor then performs sensor fusion on the orientation processed by the vision
and the local Inertial measurement unit (IMU). This greatly improves the quality
of the predicted orientation.

To extend this idea, we plan to do more sensor fusion on the robot. We will
use the output of the four rotary encoders connected to the wheels, the output
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of the IMU, the proximity sensor array around the robot, and the filtered world
state received from the tracker.

In addition, we want to move most of the low-level behaviors shown in table
1 to the robot’s local processor. Combined with local sensor fusion, this results
in improved navigation efficiency and safety, even in the presence of excessive
vision noise and wireless link latency variations.
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