
Triton RCSC 2023
Team Description Paper

Yash Puneet1, Rafaella Gomes2, Jenny Quach, Rohil Kadekar, Tyler Flar, Kyle
Trinh, Syed Islam, Rana Singh, Jason Wong, Kazuma Nagatsuka, Benjamin

Liang, Steven Shi, Aditya Parmar, Ali Alabiad, Marisol Soto-Ciriaco, Yichen Yu,
Francisco Gutierrez, Joshua Gomez, Peter Li, Zarif Mustahsin, Nathan Kao,

Pranav Mehta, Kaylana Nickels, Alejandro Martinez

University of California, San Diego, Institute of Electrical and Electronics Engineers
ypuneet@ucsd.edu1

University of California, San Diego, Institute of Electrical and Electronics Engineers
ragomes@ucsd.edu2

Abstract. This paper describes the design techniques and method-
ologies used to build autonomous robots meant to compete in
the 2023 RoboCup Small Size League (SSL) tournament in
Bordeaux, France. The robots have capabilities of path-finding,
omni-directional movement, and high instantaneous power flow
for kicking. In addition, they have theoretical designs for ball
control (dribbling) while in motion

Keywords: Robot, design technique, capacitor charger, algorithm.

Team Tritons RCSC

Robot Component Details

Embedded Computer Broadcom BCM2711 Cortex-A72 (ARM v8) 64-bit
SoC @ 1.5GHz (Embedded in Raspberry Pi 4B)

Embedded Microcontroller STM32F427IIH6 Cortex-M4 (ARM) 32-bit C @ 180
MHz (Embedded in DJI RoboMaster Development
Board Type A [abbrev. as RM])

IMU System (9DOF) MPU6500 6DOF IMU (Embedded in RM), IST8310
3DOF Magnetometer (Embedded in RM)

Proximity Sensor ST VL53L1X ToF (Not included in the current pro-
totype, but will appear in a future upgrade to detect
ball-holding status)

Communication WiFi between standard home router and our PC

Main Motors DJI M2006 Motor with built-in encoders, Max 500
rpm, Max 44W, 416rpm at 1 Nm, @24V

Gear Ratio 3.33, wheel speed up to 1385.28 rpm

ESCs DJI C610 32-bit FOC ESC (interfaced with CAN
BUS), @24V, @Max 10A

Wheels GTF 50mm Omni Wheel

Dribbler Motor & ESC T-MOTOR MT2212-13 980KV Brushless Motor (cur-
rent prototype), XING-E 2207 1800KV Brushless
Motor (future upgrade), ICQUANZX ESC BLHeli S
6s 35A

Kicker Circuit LT3751 Capacitor Charger Controller IC, GA3459-
BL Flyback Transformer (turn ratio 1:10), FDS2582
NMOS, ES3J, IKB40N65ES5, SMBJ13CA, 2700 Ca-
pacitor, LTC4231, LTC2955, @22.2v operating volt-
age, boost to 130V in 272 ms

Power Supply Ovonic 1300mAh 22.2V 6S 100C

Table 1: Robot Specification Table

1 Introduction

The 2022-2023 season is the team’s third attempt at the international competition.
Nearly all previous team members graduated from the University of California
San Diego in Spring of 2022. As a result, the team became a rookie team, with
nearly all members having no prior RoboCup experience. The mechanical design
was redone from scratch. The AI has been redesigned as well, utilizing a Behavior
Tree instead of a Skill System. Current work focuses on interfacing between the
distinct parts of the design.

UC San Diego IEEE Student Branch 2

Team Tritons RCSC

Fig. 1: Original team’s prototype

Fig. 2: Last season’s redesigned prototype

2 Mechanical Design

2.1 Materials and Prototyping Technology

As sturdiness and weight are major factors for the robots due to rapid movements
being required as well as being able to keep up with the ball and opposing team
robots, the choice of material is a major aspect of the mechanical design.

For our initial prototypes, we are using 3D Printing with PLA for the most part
to so we can have a functional chassis for testing other components without having
to first spend time trying to perfect the use of different technologies/materials.
We hope to work with different materials for different parts of our final robot
to account for the various needs of these parts. The current plan is as follows
though this may change after we experiment with these materials:

UC San Diego IEEE Student Branch 3

Team Tritons RCSC

1. Laser cut metal (probably aluminium or steel) base-plates for sturdiness and
to keep the heaviest part of the robot at the bottom for added stability

2. Laser cut wood for internal parts so it is quick to create and it doesn’t need
to be very sturdy and resitant to wear and tear

3. 3D Printed PLA or Resin for more intericate parts such as fasteners or cable
channels

4. Carbon-fibre for most of the baseplates and major supports
5. Vacuum Formed plastic for the extrenal shell for weight considerations.

Sturdiness will be provided by the internal structure and supports.

2.2 Drive Train

The robot uses four omni-directional wheels oriented at 90 degrees [2] from each
other for all wheels. This angle inclination allowed us to model standardised
equations for all axes of motion and simplify the robot’s movement commands.
However, this reduced the space we have for the dribbler near the front. We
are currently experimenting with dribbler designs to account for this limited
space. We may increase the angle for the front wheels slightly and account for
this in our omni-wheel motion models if we require more room for effective
dribbler and kicker mechanisms in the future. For the motors, we are using DJI
Robomaster M2006 P36 Brush-less motors paired with the same manufacturer’s
C610 Electronic Speed Controllers (ESCs). We chose these since we are using the
DJI Robomaster Type A Development Board to control our actuators and using
parts from the same manufacturer would eliminate any compatibility issues.

2.3 Kicker

Fig. 3: Solenoid

The solenoid construction will remain the same as last year for the same
reasons, maximising space efficiency. Thus, we will continue to use the TIGERs
Mannheim’s stadium-shaped solenoid design [1].

UC San Diego IEEE Student Branch 4

Team Tritons RCSC

Provided that we have all other functionality working in time, we may experi-
ment with new solenoid designs for faster or more complex kicking motions.

2.4 CAD Design

The CAD design team has created empty space for cable management of the
wires to be run through the lowest layers to upper.In attempts to create stability
between the layers two vertical spars connect at the edges are seen. A space
for the battery, and slightly sunken areas to embed electronics onto the board
to maintain position were added. The base is expected to undergo changes to
account for the solenoid-dribbler.

Fig. 4: 2023’s Redesigned CAD prototype

Fig. 5: 2023’s Physical Robot Construction

UC San Diego IEEE Student Branch 5

Team Tritons RCSC

3 Electronics

3.1 Kicker Board

The Kicker Board mechanics are expected to remain the same for this year’s
construction though we plan on changing the way it is implemented. The basic
mechanism of our kicker board revolved around the charging of high power
capacitors and rapidly discharging them through a solenoid to achieve a quick
extension and retraction of the plunger. We are experimenting with using high
power boost converters to charge capacitors in a safer way but this idea is still
in its prototyping stage. We will be testing both strategies (the previous design
with charging ICs and the one we are experimenting with using boost converters)
to compare performance before deciding on the best way forward. Additionally,
we are theoretically designing the possibility of a moving kicker mechanism to
allow angled kicks using a servo motor rather than having to reorient the entire
robot.

4 Embedded Systems

Embedded systems are responsible for the integration of hardware and software
on the robots. Our goal is to establish a robust network of communication between
the physical movers of the system, or actuators, and the software-coupled sensors
to exchange data efficiently.

For communication, while Universal Serial Bus (USB) was used by the teams
in the previous years, this time we are working with UART to allow the Raspberry
Pi 4 to send signals to the STM32 microcontroller. This year’s team members
are more familiar with UART, since it has a plethora of documentation available
and is easy to use for one way data transfer from the Pi to STM32.

4.1 Current Experiments with Control Systems

As stated in projected improvement goals by previous year’s team, we are working
on updating our embedded systems for better performance during teh competition.

We are working on defining a set of system specifications for the robot that
translate to requirements for PID control. This primarily involves calculating
the percentage overshoot of our robot’s motion as compared to the expected
movement range based on the given command, settling time for these inaccuracies
to be bound by acceptable margins, and maximum response to a unit disturbance
to account for error tolerance. We plan on implementing either hardware or

UC San Diego IEEE Student Branch 6

Team Tritons RCSC

software PID, or a combination of both, in order to make our robots more
adaptive to errors that might occur in converting software simulations to physical
movements.

5 Calculations for Successful Task Execution

One of the most important calculations to factor in is the rolling of a ball. This
is important as figuring out ideal angles to push the ball at can help with robot
design and help the robot be able to control a ball better.
A variable we need to account for in order to have ideal rolling is the friction
from the floor. The best way to avoid friction as much as possible is to push it
with as small of an angle as possible (measuring from the horizontal), but not
entirely at zero as then the ball would be harder to control and we would have
no resistance.

Friction is calculated with this equation:

Ff = µ ∗N (1)

In this case, N or normal force is equal to the weight of the ball itself plus the
vertical component of the force applied (F), turning the equation into:

Ff = µ ∗ (sin(θ) +Wball) (2)

The closer the angle gets to zero, the less friction we add from the component
that pushes the ball around. If we pushed the ball from underneath (upwards
angle), it would reduce friction by lowering the vertical component caused by the
weight of the ball, but makes the ball harder to control, meaning that the most
ideal angle to push the ball is an angle a bit more than zero from the horizontal.

Control of the ball is affected by Newton’s 1st Law. With Newton’s 1st law, we
know that if the ball is moving, it will continue moving unless another force is
added, hence why we have a slight vertical downwards from the robot pushing
the ball.

6 Software

6.1 General Setup

The general software setup continues to be the same as last year’s, as illustrated
in Figure 6. Both TritonSoccerAI and TritonBot use a simplified Publisher-
Subscriber system for convenient inter-thread communications, facilitated via
RabbitMQ and User Datagram Protocol (UDP).

UC San Diego IEEE Student Branch 7

Team Tritons RCSC

TritonBot

 AI Interface

Robot
Command
Global To

Local
Processor

TritonBot
Message

Processor
Vision Filter

Simulator
Robot Control

Interface

Robot
Command
Local To
Wheel

Processor

Robot
Command
Wheel To

Motor
Processor

Embedded
Systems
Interface

TritonSoccerAI

Camera
Interface

Vision Biased
Converter

Filter Module

Simulator
Command
Interface

TritonBot
Message
Interface

User Interface

Robot
Command
Audience
Converter

TritonBot
Message
Builder

AI

Simulator
Robot

Command
Interface

Game
Controller
Interface

SimulatorDisplay
Embedded
Systems

Game
Controller

Fig. 6: General Module Setup

6.2 TritonSoccerAI Software (Java)

Last year, our AI ran on what we called a ”Skill System.” Each skill was composed
of sub-skills, which were composed of sub-sub-skills, etc. Though skills could
run concurrently, all sub-skills of a given skill had to finish running in order
for a given skill to finish running. As a result, this AI design proved too slow.
Some skills, which took longer to run, would often prevent the AI from making
decisions on skills that had already terminated.

We decided to redesign our AI completely, switching to a Behavior Tree
based system. A Behavior Tree is a Tree of hierarchical nodes, with the nodes
at the ends, called leaves, executing commands. A Behavior Tree is iterable and
customizable. But most importantly, with this new system, a given node may
terminate without terminating or even running all its child nodes, which results
in a much faster AI.

We will expand on this particular improvement in section 5.4

6.3 TritonBot Software (Python)

TritonBot will run on the Raspberry pi, which is installed in every robot and
serve as a middle communicator to trasnmit the commands from TritonSoccerAI
to embedded system. To receive the commands from TritonSoccerAI, each robot
acts as its own UDP server, receiving commands from the TritonSoccerAI client.

UC San Diego IEEE Student Branch 8

Team Tritons RCSC

The commands received from TritonSoccerAI are vectors in global space that get
converted from global space to local space to wheel space by TritonBot’s processing
modules. Each processing module connects to each other over RabbitMQ which
takes the role of an intermediate buffer.

In competition set up, TritonBot now sends motor commands to the embedded
systems Robomaster through UART instead of USB, as was the case last year.
This mode of communication involves the use of two channels, namely TX and
RX, to transmit and receive signals. Specifically, the TX pin transmits signals
to the peripheral while the RX pin receives signals. We opted for this mode of
communication due to its simplicity in terms of connections, as it requires only a
few pins and a single wire. Additionally, since we only intend for the Raspberry
Pi to transmit data and for the RoboMaster to receive it, the simplicity of the
communication method was deemed sufficient. Despite being an older form of
communication, we found available code to establish and facilitate communication
between the boards.

6.4 Behavior Tree

Currently, the AI utilizes a behavior tree to make decisions, according to the
diagrams shown. Nodes may be utilized by parent nodes to allow for larger tasks
to be completed by breaking down the large task into smaller sub-tasks. In our
model, each robot runs its own behavior tree independently, thereby giving each
robot the ability to make decisions about its own actions. Each fielder robot
runs identical fielder trees while the the goalkeeping robot runs a goalkeeper tree.
To assist in coordinated actions (eg. passing), a central coordinator is utilized
to send messages to all behavior trees. Types of nodes include composite nodes
that define behavior for a branch, conditional nodes that check if a particular
condition is satisfied, service nodes that run at a defined frequency, and task nodes
that perform distinct low-level tasks. The sub-nodes of a given node must finish
execution in order for the higher level node to finish execution. Multiple service
nodes can run concurrently but multiple task nodes may not run concurrently.

UC San Diego IEEE Student Branch 9

Team Tritons RCSC

Fig. 7: Fielder BT

Fielder Behavior Tree The superior Fielder Behavior Tree, see Figure 7,
operates as follows. In the absence of a command from the Referee, the fielder
robots either operate according to the Fielder Offense Behavior Tree, when the
team is in possession of the ball, or operate according to the Fielder Defense
Behavior Tree, when the team is not in possession of the ball. Should the AI
receive a command from the Referee, it complies accordingly.

Fig. 8: Fielder Offense BT

UC San Diego IEEE Student Branch 10

Team Tritons RCSC

Fielder Offense Behavior Tree When the team is in possession of the ball,
the AI operates all fielder robots according to the Fielder Offense Behavior Tree,
as shown in Figure 8. Those fielder robots which are not themselves in possession
move into supporting offensive positions such that they are open to be passed to.
The robot with possession of the ball will either take a shot at the goal, given
it has an open shot, dribble the ball forward, if foes are not blocking its path
toward goal, or perform a coordinated pass to an ally, which can include a direct
pass or a through pass into space ahead of the pass receiver. Should a robot be
involved in a coordinated action such as being the recipient of a coordinated pass,
the robot will receive a message from the central coordinator instructing it to
take the appropriate action.

Fig. 9: Fielder Defense BT

Fielder Defense Behavior Tree When the team is not in possession of the
ball, the AI operates all fielder robots according to the Fielder Defense Behavior
Tree, as shown in Figure 9. The robot closest to the ball chases after the ball
to take possession, while all other fielder robots move to guard foes based on
the distance to each foe relative to other ally fielders as well as the distance of a
foe to each ally fielder relative to other foes. This functionality allows a robot
to move to the best foe for it to guard, not necessarily the closest one and will
occasionally result in a foe being guarded by two allies.

UC San Diego IEEE Student Branch 11

Team Tritons RCSC

Fig. 10: Goalkeeper BT

Goalkeeper Behavior Tree Just as for the Fielder Behavior Trees, the Goal-
keeper Behavior Tree complies with Referee commands. Similarly to the fielder
robots, the goalkeeper either operates on offense, when in possession of the
ball, or defense, when it is not in possession of the ball. Unlike the fielders, the
goalkeeper’s only main courses of action are to pass the ball to an ally or move
to the optimal blocking position. Should the goalkeeper be the recipient of a
coordinated pass, the robot will receive a message from the central coordinator
instructing it to take the appropriate action. See Figure 10.

6.5 Future Goals

Future Modules Before actual competition, both TritonSoccerAI and TritonBot
need additional modules. TritonSoccerAI requires a module to receive SSL-Game-
Controller messages. TritonBot needs modules to process local commands to
wheel commands, wheel commands to motor commands, and a module to send
these motor commands to the embedded system.

Future Pathfinding and Noise Filtration Improvements The current
pathfinding algorithm functions well for simpler situations but needs improvement
in finding the most optimal path in a fast-paced environment where many variables
are rapidly changing. One of the main scenarios that needs improvement, for
example, is the scenario where the path to the target location is completely free
from obstacles. In the past, we have integrated Jump Point Search (JPS) in our
pathfinding, which has yielded very optimal results, and we hope to build on
that again this year.

UC San Diego IEEE Student Branch 12

Team Tritons RCSC

JPS is an optimal algorithm for finding a path when there are few obstacles
[?]. This algorithm aims to jump-ahead in a particular direction as far as possible,
thereby skipping many nodes. The goal is to expand until you reach a node of
interest, which could be a things such as a ”forced neighbor” (e.g. an obstacle
nearby that breaks the assumption that heading further in that direction is most
optimal), an edge, or the target node. That node is then added to the open set
and then the scenario is re-evaluated. Just like with A*, the paths generated
from JPS can be post-smoothed by checking line-of-sight with the other nodes
further down in the path.

Additionally, the prediction of the field is rather simple at the moment. All
obstacles are currently approximated with circles whereas other shapes can be
utilized for more precise and accurate representations of obstacles. For example,
ellipses would be utilized to represent moving robots, with the velocity of the
robot determining the dimensions of the ellipse. In addition, the accelerations
of the objects have not been accounted for yet due to significant amounts of
noise. The accuracy of both the velocity and acceleration can be increased by
improving noise filtration, which we aim to do by using the Extended Kalman
Filter algorithm. The EKF algorithm operates by updating its predictions based
on measurements and then adjusting, providing a more accurate estimate of the
velocity and acceleration of the objects and reducing the effect of measurement
noise. This will be especially important when integrating the Triton Bots in real
life since there will certainly be a great deal of noise.

Future TritonSoccerAI Improvements During the course of the next few
months, we expect many changes will be made to the initial designs of the
behavior trees based on the results of testing and simulated gameplay. The
algorithm to identify the optimal shot can be improved as well as the similar
algorithm to identify the optimal pass. In particular, the adding of the capability
for a robot to make a through pass (forward pass into a space 1-3 meters in front
of the targeted pass reciever) is a significant priority in order for robots to not be
limited to straight-line passes to one another. Positioning when on offense will
need significant improvements as positioning decisions will be made individually
by each robot as opposed to a centralized source, like in previous years.

Future TritonBot Improvements We are planning on making one UDP server
for TritonBot and TritonSoccerAI to connect to as clients due to there currently
being only one-way communication from TritonSoccerAI to TritonBot. This
would allow for better consistent status updates from TritonBot for situations
where a robot was unable to complete a command or is currently stuck processing
a different command.

UC San Diego IEEE Student Branch 13

Team Tritons RCSC

We also plan on phasing RabbitMQ out as it provides very little benefit
compared to the amount of overhead it takes to set up. Using a Python library
buffer or file system may be more effective for our purposes.

7 Acknowledgements

We would not have been able to make so much progress without the RoboCup
community for the extensive information put online in terms of EDTP, TDPs
and GitHub repositories. We would also like to thank TIGERS Mannheim, for
their extensive contributions to the RoboCup community and being advocates
of open source development. Finally, a big thanks to Nicolai Ommer for his
responsiveness and lending of the field camera.

We would also like to thank the UC San Diego IEEE Chapter for their support,
guidance, and funding.

A special thanks is due to Professor Amy Eguchi with helping us establish
contact with the RoboCup organization and helping the team grow its connections.

Special thanks to the UCSD Makerspace and the Director, David Lesser, for
providing our team with the tools and space to build our prototype

References

1. Andre Ryll, S.J.: Tigers mannheim (2020)
2. Ryll, A., Ommer, N., Geiger, M., Jauer, M., Theis, J.: Tigers mannheim (2019)

UC San Diego IEEE Student Branch 14

	Triton RCSC 2023 Team Description Paper

