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Fig. 1. luhbots soccer robot from 2024

Abstract. This paper introduces a component of our offensive game-
play strategy which is designed for deployment in the Soccer Small Size
League of the RoboCup. Emphasizing the positioning of offensive robots,
a fundamental component of our attack strategy, we present three dif-
ferent approaches: Force Driven Positioning (FDP), Restricted Radial
Positioning (RRP), and the Octopus Algorithm. These methods will be
elucidated by providing an explanation of their function as well as a
comparison of their respective advantages and disadvantages.
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1 Introduction

The luhbots soccer team made its debut in the RoboCup 2022. In Division B
the team secured 3rd place at RoboCup 2022 and 2nd place at RoboCup 2023.
Being a novel participant, luhbots soccer builds on its past successes and aspires
to move up to Division A in the upcoming season.

This year, in pursuit of this goal, the TDP is written in an extended form
for the first time. In the previous years, the focus lied on the introduction and
overview of the system as a whole [3,4]. This paper primarily delves into the
offensive game play strategy. Over the past two years various approaches have
been developed and employed. The experiences and insights gained from these
endeavors, along with the functionality of the algorithms, will be elucidated in
this paper.

The preceding TDP [4] outlines the foundational architecture of our strat-
egy, featuring the Observer, Role Manager, and Task Manager components. The
Observer extracts high level data from the vision’s low-level data, such as the
current goal probability, making it accessible to other modules. This information
is used to assign a role to each robot by determining whether it should engage
in offensive or defensive behavior. In turn the resulting action is controlled by
the Task Manager. Robots sharing the same role operate collectively as a squad,
which facilitates cooperation between them. This approach has proven to be ex-
tremely effective over the past year, due to the decision-making process being
divided into several stages which can be processed and modified independently.
This not only simplifies the development process, but also increases adaptability.
In this paper, we will look at the behavior of the Secondary Attackers. Their main
task is to support the Primary Attacker by strategically positioning themselves
for a potential pass. The selection of this position is crucial. The aim is to create
a scenario where intercepting the pass becomes challenging for the opponent.
Simultaneously, the chosen pass should enhance the overall team’s prospects of
scoring. To find such a position, three different approaches will be presented
in this paper: Force Driven Positioning, Radial Restricted Positioning, and the
Octopus Algorithm.
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2 Force-Driven Positioning (FDP)

In the past the luhbots soccer team utilized Force-Driven Positioning (FDP).
Features and anti-features are defined to attract or repel robots [3]. The resulting
combined forces determine both the direction and speed of the robot’s movement.
The selection of features is based on the following assumptions:

1. The passing line to the robot should remain unobstructed, preventing oppo-
nents from intercepting the ball.

2. The robot should position itself as far away from opponents as possible
allowing time for ball manipulation after receiving the ball.

3. The robot should position itself close to the opponent’s penalty area increas-
ing its chances for a successful goal shot after receiving the ball.

4. The robots should keep their distance from their teammates avoiding ob-
struction and forcing the opponent to split up their defenders.

The forces that act on the robots at all times can be derived from these assump-
tions. In order to position the robots close to the opponent’s penalty area, an
attractive force should emanate from it. It makes sense not to define the penalty
area itself as a feature but rather lines in its vicinity as this provides robots with
more space and freedom for positioning. Requirement 2 can be implemented by
interpreting the ball as a light source. The shadows consequently thrown by the
opposing robots are viewed as anti-features from which our robots are repelled.
This prevents robots from positioning themselves behind opponents which would
make it easier for the opponent to intercept the ball. Requirements 3 and 4 also
indicate that both ally robots and the opponent’s robots should be regarded as
repelling anti-targets. Tests in the simulations have shown that the force exerted
by enemy robots should be stronger than that of the team members. The total
force resulting from the individual forces acting on the robots causes them to
drive away from opponents and team members while positioning them close to
the opponent’s penalty area, as illustrated in Fig. 2.

Discussion A major challenge in employing this method is adjusting the weight-
ings of the individual forces. If individual weightings are too strong, they dom-
inate so that the other factors are no longer sufficiently considered, which in
turn leads to sub optimal positioning. Similarly, weightings that are too weak
also lead to poor positioning, as factors are neglected and therefore not all the
requirements can be met. Adjusting the weights is a time-consuming process in
which values are changed manually and assessed in a simulated environment.
As this is done without standardized test cases, the results are also subject to
a strong human bias. Future applications of this approach should involve the
creation of standardized test scenarios for a more objective evaluation. A partic-
ular challenge is the weighting of the opposing shadows. The weightings should
ideally be as high as possible to minimize the risk of an enemy’s interception.
However, the dynamic nature of the robots and ball as well as the associated
rapid changes of the shadows result in uncontrolled movements and the robots



4 M. Westermann et al.

Fig. 2. Positioning of offensive robots using the FDP algorithm. Positioning is per-
formed by forces acting on the robot from the shown features. The force vectors de-
picted in this image are not true to scale.

stray far away from the opponent’s penalty area. Additionally, robots frequently
become stuck in local optima between two shadows. Another issue is the dis-
regard of the ball’s distance to the goal. Given that robots generally position
themselves near the opponent’s penalty area, the distances that the ball has to
cover during the pass can be quite extensive. This complicates ball reception
and increases the risk of a successful interception. While defining the ball itself
as an attracting feature may help to resolve this issue, it also introduces the
challenge of additional parameters. This would therefore further complicate the
adjustments and optimization of the weightings. Despite these problems, the ap-
proach has proven to be effective in achieving good positioning of the robots. The
approach may be particularly suitable for newer teams due to its relatively sim-
ple implementation. However, to further increase the effectiveness of the robots,
other approaches should be used instead, as presented below.
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3 Restricted Radial Positioning (RRP)

In order to tackle the problems of the FDP approach, an alternative was devel-
oped and assessed at the 2023 Schubert Open Tournament in Crailsheim. The
basic principles remain the same: The robots should avoid opponents and move
into open space. To prevent robots from getting stuck in local minima, FDP is
to be replaced by a global search. Depending on the resolution of the playing
field, this can require an immense amount of computing power as a large number
of positions have to be evaluated for their suitability. Many of these evaluated
positions can be discarded, for example if they are too close to or too far away
from the ball. In the former case, a pass would not make sense as it would not
result in any significant progress. The second case can be ruled out, because as
explained in the previous section, long-distance passes are difficult to execute
and increase the risk of an interception by the opponent. Therefore, the possi-
ble positions of the secondary attackers are limited to a circle around the ball.
Various positions on this circle are evaluated in terms of suitability and then
selected. The exact procedure is explained in the following section.

Algorithm As the permitted positions are limited to a circular shape around
the ball, it is advantageous to display them in polar coordinates. The radius is
set to approximately two to three meters, a distance that is considered optimal
for advancing toward the opponent’s goal and allowing the ball to be received
reliably.

These individual positions can be displayed as an array, with the index cor-
responding to the angular position in relation to the ball. Notably, the radius is
irrelevant in this context as it remains consistent for all positions and does not
provide any additional information. Subsequently, values signifying the suitabil-
ity of the respective position should be assigned to each element of the array. This
array can then be used to identify local and global optima and thus influence
the positioning strategy.

As in the previous section, it should also be possible with this approach to
define features which robots are attracted to. More than one attracting feature
needs to be chosen, so that the optimal position does not converge into a single
point. This is accomplished by assigning negative values at the corresponding
positions in the array. One possible choice of such points is in the middle of the
individual quadrants, specifically at angles of 45°, 135°, 225° and 315°. These
angles indicate the preferred position of the robots. The center of the respective
quadrant is selected to give the robots as much freedom of movement as possible
in both directions if, for example, an enemy robot needs to be avoided. These
features should also affect their neighbors. This is achieved by smoothing the
resulting array using a Gaussian filter kernel [5]. Smoothing means that positions
close to the defined features are also considered to be favorable, while those
situated further away are being avoided.

Building upon this methodology, we can employ the same principle to de-
fine anti-features which represent positions that should be avoided. Primarily,



6 M. Westermann et al.

this category encompasses the enemy robots as previously described in the as-
sumptions. Only robots that are close to the ball have to be regarded. Those
at greater distance have negligible impact on passing success. As a general rule,
robots positioned beyond 1.3 times the defined circle radius are disregarded in
subsequent considerations, since it is unlikely that those robots will be able to
intercept the pass in time. Similar to the process outlined for target positions,
the opponent positions are first converted into polar coordinates. Subsequently,
positive values are assigned in a separate array at these opponent positions, sig-
nifying locations that should be avoided by our robots. As before the array must
then be smoothed using a Gaussian filter kernel to optimize avoidance strategies
and minimize potential interference from opponents.

This procedure yields two arrays: one specifies the preferred positions, while
the other identifies positions to be avoided. The element wise sum of these arrays
results in a function that characterizes the suitability of each position. Lower
values in this function indicate a higher suitability for the positioning of an
offensive player.

Fig. 3. Evaluation function generated by the RRP algorithm is based on the scenario
illustrated in Fig. 4. The optimal position is determined by locating the minimum of
the result function in each quadrant. The result function is calculated by adding the
enemy bias function and the target bias function.

To prevent the congregation of all robots at a global optimum, a restriction
of one robot per quadrant is imposed. Additionally, a preference is given to
quadrants that are closer towards the enemy’s defense area. Other quadrants are
considered only if enough offensive players are available. When the ball is near
the opponent’s penalty area, quadrants in the direction of one’s own half may be
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Fig. 4. Resultant positions identified by the RRP algorithm through the utilization
of minima within each quadrant of the evaluation function depicted in Fig. 3. This
function is visualized as a radial heat map.

preferred instead. This adjustment facilitates the execution of back passes and
subsequent reflex shots on the opponent’s goal.

Tests have shown that due to the global search in the quadrant, the opti-
mum position may be in an unstable state if two or more positions have a similar
score. Introducing the current robot position as an additional attracting feature
resolves the issue by inducing a hysteresis-effect. This ensures that a new posi-
tion must be a significant improvement over the robots’ current position. This
prevents the position from being changed too frequently. Otherwise, the robot
could temporarily be unavailable for a pass during the transition between posi-
tions. To apply such a hysteresis effect an additional array must be defined in
which the robot’s current position is given a negative value. Analogous to the
previous features a Gaussian filter must be applied.

Hyperparameter Tuning It follows from the algorithm described that a total
of three features are being used: the target position of the robot, the current posi-
tion of the robot and the opponent positions. Each of these features is represented
by a Gaussian curve, which in turn contains two essential hyperparameters: the
height of the peak and the variance. The height of the peak signifies the mag-
nitude of the feature’s impact, while the variance characterizes its influence on
neighboring points. The values for each parameter must be chosen appropriately
in order to achieve good positioning. Analogous to FDP, manual adjustments
were made during the optimization process and manually validated in a simu-
lated environment. Moving forward, it is recommended to define standardized
test scenarios for optimization purposes. This optimization approach resulted
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in the following parameter set used at the 2023 Schubert Open Tournament in
Crailsheim:

Parameter Peak Height Variance

Target Position 0.5 20°
Current Position 0.1 20°
Enemy Position 1.0 15°

Discussion This algorithm underwent testing during a competitive event at
the Schubert Open Tournament 2023, followed by a comprehensive evaluation.
As stated earlier, the primary motivation behind the described algorithm is to
confine the robot’s positions, ensuring their proximity to the ball. The objective
is to enhance reliable ball reception, in order to gain progress towards the oppo-
nent’s goal through passing, while minimizing the likelihood of an interception.
As the games have shown, this approach is effective in maintaining the desired
distance from the ball. However, one notable observation was that the strict
limitation on robot positioning unintentionally led to sub optimal placement on
the field. While the robots optimize their chances of successfully receiving the
ball, the strategic aspect of posing a threat to the opponent from their positions
is not considered. Similar to FDP, no assessment is made to whether the chosen
positions can lead to potential shots at the goal. Although advancing close to the
opponent’s goal generally improves the chances of scoring, this factor alone is
not sufficient to evaluate the position. It fails to account for other critical factors
such as a clear line of sight towards the goal. To resolve the conflict between
optimizing the chance of receiving the ball and posing a threat to the opponent,
additional freedoms in positioning are necessary, which are not feasible with the
described approach. One solution would be to define multiple circular paths and
incorporate the goal probability as an additional factor into the positions. How-
ever, this idea was discarded in favor of a new concept, which is presented in the
following chapter.
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4 Octopus Algorithm

In the previous sections, FDP and RRP were presented as two approaches that
can be used to position offensive robots. Practical use has shown that FDP gives
the robots too much freedom, resulting in poor positioning. Although RRP solves
this problem, the restrictions on the robots are too large, which also result in poor
positioning. In order to combine the advantages of both concepts the Octopus
Algorithm was developed.

Motivation A significant change in the luhbots soccer game strategy involves
the introduction of decision trees, which have not been utilized in previous ap-
proaches. With the aid of decision trees, it becomes possible to simulate and
evaluate a variety of passes and pass combinations, determining which options
offer the highest probabilities of a successful goal shot while minimizing the risk
of interception by the opponent. This evaluation not only considers multiple pass
combinations but also short distance passes. This approach aims to replace the
purely reactive playing style of the previous two years with a proactive planning
approach [3,4].

This shift in the overall game strategy also necessitates the development of a
novel concept for player positioning. Notably, not all offensive players need to be
controlled, as the decision tree already evaluates potential pass sequences and, if
necessary, defines the location at which a robot should receive the ball. Robots
situated in a sub-optimal position will not be part of the pass sequence and
should consequently move to enhance their position. For this purpose, algorithms
such as FDP or RRP as described above, could be employed. However, due to
the issues associated with these algorithms as well as the emerging requirement
for continuous movement, a novel approach has been developed, which will be
introduced in this section.

The Basic Octopus Algorithm The Octopus Algorithm is a local optimiza-
tion search. Unlike RRP, it does not seek an optimum in the vicinity of the ball
but rather in the region surrounding the robot. To achieve this, points are gen-
erated at 45° intervals with approximately 0.5m distance from the robot. These
points form the so-called Tentacles of the Octopus, that are used to continuously
scan its surroundings, as demonstrated in Fig. 5. During the scanning process,
the algorithm estimates the success probability of a pass and goal shot at each
position, which is discussed in more detail in the following paragraph. These two
factors are multiplied to obtain the overall evaluation of that position.

To calculate the success probability of a pass, the first step is to determine
the action radii of the opponents. These indicate the range within which the op-
ponent’s robot could maneuver up to the latest possible interception time. The
action radii are calculated with a model priorly trained using machine learning.
Throughout the training phase, a regression model is fine-tuned based on fac-
tors such as friction parameters of the carpet, shot execution times based on
the relative positions between the ball, ball carrier and target, and the measured
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maximum speeds of opponents. Subsequently, a line is drawn from the ball to the
target position. The intersection of the line with the opponents’ action radii is
utilized to estimate the probability of the opponent successfully intercepting the
shot. If there are no intersections between the line and the action radii, it can be
assumed that the opponent is unable to reach the shot trajectory in time. Con-
versely, if significant overlaps occur, the likelihood of success is considered lower.
This method can also be extended to calculate the goal probability by evaluating
shots to various points on the goal line. The goal probability and the optimal
target point are derived from the point with the best evaluation. As previously
explained, for each Tentacle, the pass and goal probabilities are determined and
combined into an overall score through multiplication. Subsequently, these scores
are compared, with the highest score determining the direction for the robot to
move in. This aims to optimize both the robot’s chance of successfully receiving
the ball and its potential threat to the opponent. Since the robot is only aware
of the evaluations of points in its vicinity, but not of the evaluation of its current
location, it is compelled to move away from its current position. This behavior
is undesirable in RRP, as the robot might become unavailable for a pass during
this movement. However, this implication does not need to be considered for
the Octopus Algorithm, as the decision tree has already assessed that the robot
should not be targeted for a pass at that moment. Consequently, temporary un-
availability poses no major concern, allowing the robot to improve its position
for potential future passes. However, a significant challenge of this approach lies
in the fact that, much like FDP, there is no guarantee that the robot will remain
in a specific region. The resulting challenges have already been elucidated in
section 2. To address this issue, so-called Aquariums are defined, which repre-
sent regions that the robot is not allowed to leave. These are discussed in the
following section.

Defining Aquariums As the experiences with the FDP have demonstrated,
it is crucial to be able to restrict the position of the robots. Simultaneously,
as evidenced by RRP, overly stringent limitations can be counterproductive, as
robots may no longer have the necessary freedom to position themselves effec-
tively. Therefore, a compromise is sought, allowing robots to move freely within a
box-shaped zone while prohibiting them from leaving that region. In the follow-
ing, these zones are referred to as Aquariums. To confine the movements of the
robots to the Aquarium, it suffices to set the Tentacle value to a negative value
once it extends beyond the Aquarium boundaries. It can generally be assumed
that at least one Tentacle is always within the Aquarium, allowing for the selec-
tion of a direction at any time that keeps the robot within the permitted zone.
An exception arises when there is a change in assignment to the corresponding
Aquarium, potentially causing all Tentacles to be outside the Aquarium. In such
instances, a movement command is issued to reposition the robot at the center
of the Aquarium.
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Fig. 5. Octopus Algorithm Visualization: Tentacles are depicted by purple lines, with
their widths indicating the chance of pass success. Colored circles represent goal prob-
abilities at various positions, where green circles denote higher probabilities and red
circles denote lower probabilities. Additionally, a black arrow indicates the optimal di-
rection of movement, determined by the highest scoring Tentacle.

The positions of the Aquariums should be determined according to the cur-
rent state of the game. As the decisive criterion the current ball position is used.
Depending on the ball position, three cases can be classified:

1. Defensive setting: The ball is close to our goal
2. Balanced setting: The ball is in the middle of the field
3. Aggressive setting: The ball is close to the opponent’s goal

For each of these cases, three Aquariums must be defined, as there can be up
to three offensive players at any given time. This will change with the transi-
tion from Division B to Division A, since the higher total number of robots also
affects the number of offensive robots and therefore the number of Aquariums
needed. Each Aquarium is also given a priority, indicating the order in which
the Aquariums should be occupied. When there are fewer than three offensive
players, only Aquariums with the highest priority are occupied, leaving the rest
vacant. The prioritization of Aquariums is typically based on their proximity to
the opponent’s goal, recognizing the strategic advantage of positioning offensive
players closer to the scoring area. While this approach aligns with a potential
concern in FDP regarding the riskiness of long passes, it is noteworthy that the
decision tree overrides the option of making such passes to the corresponding
robot. Instead, the recommendation is for the robot to position itself strategi-
cally, anticipating inclusion in a passing sequence at a later point when the ball
is expected to be closer to the opponent’s goal. Despite the emphasis on offensive
positioning, it is also crucial to define Aquariums in proximity of the ball. This
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ensures that robots are readily available to initiate a passing sequence. The task
of these robots is to make themselves available to receive a pass and extend it
to more aggressive robots near the opponent’s penalty area. This is particularly
crucial in defensive and balanced situations, where direct passes may be challeng-
ing due to the distance involved. In the defensive scenario, the primary objective
is to swiftly advance the ball into the opponent’s half to mitigate the risk of
conceding a goal. However, in situations classified as balanced or aggressive, the
consideration of back passes becomes integral to the strategy. Back passes serve
dual purposes: Firstly, they frequently present the opportunity for a reflex shot,
allowing the ball to be quickly shot at the opponent’s goal without the need for
ball reception. These shots pose a significant challenge for defenders due to their
requirement for rapid reactions. Secondly, back passes offer an effective method
for maneuvering around an opponent’s defensive wall or redirecting the ball to
the opposite side of the opponent’s penalty area, where defensive coverage may
be less concentrated.

The schematic depiction in Fig. 6 outlines the strategic placement of the
Aquariums. Once the size and position of the Aquariums have been determined
as shown in the illustration, the robots can be assigned to the Aquariums. This
assignment is described in the following section.

Fig. 6. Aquarium Assignment: Aquariums are represented by purple boxes, each la-
beled with a number indicating its priority, where lower numbers indicate higher pri-
ority. The selection is made when the ball position falls within the orange zone. It is
assumed that the ball is located on the right side of the field; otherwise, the Aquarium
positions must be mirrored accordingly. The opponent’s goal is on top.

Assignment Optimization To minimize travel times as much as possible, an
optimal assignment of robots to the Aquariums is essential. Algorithms like k-
nearest neighbors face the challenge of heavy dependence on the assignment order
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[1]. Instead, the assignment is determined using the Munkres algorithm, also
known as the Hungarian algorithm, which serves as a general solution method for
the assignment problem [2]. The underlying objective of the assignment problem
is to find the combination of assignments that minimizes total costs.

To achieve this, a cost matrix is defined, containing the costs for each task
and agent. In the Octopus Algorithm, the costs are represented by the squared
Euclidean distances between the robots and the center points of the Aquariums.
Squaring the costs punishes longer distances, prioritizing the minimization of
the longest route. This approach facilitates better parallelization of movements,
ensuring the swift occupation of all Aquariums. Once the optimal assignment
has been determined, movement tasks are issued to the robots corresponding
to these Aquariums, as shown in Fig. 7. As soon as at least one Tentacle is
within the Aquarium, the positional optimization is executed, as described in
the previous section.

Fig. 7. Visualization of the optimal assignment using the Munkres algorithm.

Discussion and Evaluation The Octopus Algorithm was first deployed at
the RoboCup 2023 in Bordeaux and tested against other teams. The results re-
veal that the algorithm effectively addresses many of the previously mentioned
shortcomings of FDP and RRP. By defining the Aquariums, it becomes possi-
ble to incorporate domain knowledge and ensure a strategically advantageous
positioning of the attackers. Simultaneously, this approach allows sufficient flex-
ibility, enabling the robots to maximize their chances of a successful goal scoring
attempt and a successful pass reception. This results in significantly improved
player positioning compared to previous competitions where FDP and RRP have
been utilized.
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5 Conclusion and Future Work

This paper presented three distinct approaches that the luhbots soccer team has
developed and deployed over the preceding two years. Among these, the Octopus
Algorithm has proven to be the most effective in achieving optimal positioning
for offensive players. Through this algorithm, robots actively enhance the proba-
bility of successful ball reception and subsequent goal scoring attempts, all while
integrating domain knowledge to constrain their positioning. Particularly when
combined with decision trees, the Octopus Algorithm allows to swiftly and ef-
fectively exploit opposing defenses. This was demonstrated at the RoboCup in
Bordeaux, often leading to early game terminations with scores of 10:0, partic-
ularly evident in the preliminary rounds.

As the luhbots soccer team aims to participate in Division A for the upcoming
season, the primary focus of the current development efforts is on scaling the
algorithms to accommodate 11 robots, as opposed to the current 6. A crucial
step in this process involves the transition from a polling-based architecture to
an event-based strategy to enhance overall computational efficiency.

The core functionality is intended to be retained, indicating the likelihood of
the Octopus Algorithm being deployed again at the Schubert Open Tournament
2024 and the RoboCup 2024.
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