
ITAndroids Small Size League
Team Description Paper for RoboCup 2024

André Gonçalves, Andrei Freiberger, Arnon Sousa, Arthur Souza, Artur Silva,
Bruno Yamamoto, Emanoel Morais, Felipe Filho, Gustavo da Hora, João

Barbosa, João Santos, Lucas Neves, Lucas Barros, Luiz Fusinato, Luiz Alves,
Luís Mendonça, Marcos R. O. A. Máximo, Mariana Castro, Mateus Viana,
Murilo Pedroso, Nando Farias, Paulo Façanha, Valerio Barros, Yves Sousa

Autonomous Computational Systems Lab (LAB-SCA)
Aeronautics Institute of Technology (ITA)
São José dos Campos, São Paulo, Brazil

Contact: itandroids-small@googlegroups.com
Website: http://www.itandroids.com.br

Abstract. ITAndroids is a robotics competition group associated with
the Autonomous Computational Systems Lab (LAB-SCA) at the Aero-
nautics Institute of Technology (ITA). Our focus over the last year has
primarily been on enhancing our software capabilities, with notable ad-
vancements in testing, logging, path planning, and in our GUI. Addi-
tionally, we have made substantial changes in electronics, particularly in
the redesign of communication and movement boards. While mechanics
saw more punctual improvements, notable progress has been made in the
reconstruction of the kick mechanism and cover. Our efforts are geared
towards establishing ourselves as a prominent Small Size League (SSL)
team in both the Brazilian and global robotics scenarios. This paper out-
lines our recent developments, ongoing projects, and future aspirations.

1 Introduction

ITAndroids is a robotics research group associated to the Autonomous Computa-
tional Systems Laboratory (LAB-SCA) at Aeronautics Institute of Technology.
As required by a complete endeavor in robotics, the group is multidisciplinary
and contains about 70 students from different undergraduate and graduate en-
gineering courses, and about 20 of these are in currently in the SSL team.

This paper presents our efforts in developing a Small Size team to com-
pete in RoboCup 2024 with focus to works since our Team Description Paper
for RoboCup 2023 [8]. The rest of the paper is organized as follows. Section 2
explains our electronics projects and the most recent developments. Section 3
presents our efforts regarding mechanics. Section 4 explains our artificial intelli-
gence main work and most recent refinement. Section 5 shows the development of
our software in general. Section 6 comments about our recent focus on low-level
controller. Section 7 concludes the paper and shares ideas for future work.



2 ITAndroids Team Description Paper for RoboCup 2024

2 Electronics

Currently, ITAndroids SSL has been working with the 2nd generation of robots,
where the main focus is to improve the overall operation of the main board, both
in terms of the application of the electronics that have already been designed,
and in terms of connections and integration with the robot’s mechanical design.

2.1 Next steps for the second generation

The plan was to correct any errors in the 2nd generation prototypes and at the
same time maintain the advancement of new ideas, as will be presented in the
following topics.

Mainboard v2 In the second half of 2019, we started designing a new main-
board. Key changes included the replacement of the FPGA with a STM32H753BI
[17] microcontroller, boasting 480 MHz and 2 MB of Flash memory. This shift
was motivated by the team’s greater familiarity with STM32 microcontrollers in
the humanoid league and the high performance offered by the selected model.
Additionally, the motors were upgraded to Maxon EC-45 50 W [10], requiring a
redesign of the power supply system and the adoption of the A3930 MOSFET
Driver [11] for motor control.

The adoption of a STMicroelectronics microcontroller facilitated advance-
ments in embedded software. The firmware was adapted to utilize Hardware
Abstraction Layer (HAL) drivers, and a significant upgrade was the integration
of the open-source Real-Time Operating System (RTOS) FreeRTOS kernel [1].
FreeRTOS is able to ensure a deterministic and stable response from the con-
troller, enhancing overall system integrity during matches, but care is needed
when configuring tasks and priorities. The team are currently experiencing com-
munication issues that may be related to the way the communication task was
configured. Furthermore, it was noticed that real-time embedded software is
more sensitive to maintenance-driven small code changes, which could cause
firmware malfunction or even complete failure. Code maintenance then became
more complex and less accessible for most team members. Despite this, we have
good expectations for the time determinism that the use of FreeRTOS can pro-
vide to the team once we finish reviewing and fixing the code already developed.

By the end of 2022, the mainboard PCB design was completed, as depicted
in Figure 1. In early 2023, the team made tests with firmware implementation,
with a fully functional mainboard with concluded firmware by the middle of the
first half of the year. Several small issues have been reported, but none that
would prevent the first iteration from being used in competition, such as at
LARC 2023. Many of the issues have been fixed on the board itself, and specific
improvements are being fixed in the second iteration of the board.

Although repeated bench tests and field tests were successful, the participa-
tion of ITAndroids’ SSL in LARC was quite limited due to severe communica-
tion problems between the station and robots, caused by packet losses. Some



ITAndroids Small Size League Team Description Paper for RoboCup 2024 3

Fig. 1: A rendered image of Mainboard v2 from Altium Design.

hypotheses were raised for the problem, including: interference caused by an
overly crowded spectrum, conflict and poor adaptation of the firmware interface
of the NRF24L01 module with the real-time system, RF antenna with low sensi-
tivity and low transmission power, radio station poor performance, or problems
related to USB communication between the central computer and the station.
All of these hypotheses are under study by the team and have already triggered
solutions that are under development and testing, as is the case with the revision
of the firmware and real-time system and the design of the new radio station.

Modular Structure With the aim of better handling each electronic function-
ality of the main board, we began the modularization process, which proved to
be essential for the project’s evolution. The main motivation for this was the ease
of maintenance in modules, which, in case of failures, did not render the main
board completely unusable. The Fig. 2 is a diagram that shows the configuration
envisaged for modularization, that indicates a simplified diagram of the way we
want to divide the function of each board that makes up the modules. Therefore,
there will be a main module that will carry the STM32 and the other modules
via pinhead connection; These other modules will be the radio, the kickerboard,
the brushless motor module and the voltage regulator module.

We intend to have a physical model ready by the end of 2024 and will apply
it to the robot in 2025.



4 ITAndroids Team Description Paper for RoboCup 2024

Fig. 2: New electronic board diagram.

Brushless Motor Module The motor module we designed has as its main
functionality the activation of the robot’s brushless motors, of which there are
four used in movement and one used in the dribbler’s rotating cylinder. The
integrated circuit used was the A3930, which is well established for use in brush-
less motors. The main improvement applied in this module was the reading of
current from each phase of the brushless motor; in this case, the motor used
has three phases. For this, we used the AD8216 integrated circuit, which works
together with a shunt resistor to monitor the current. In this way, we intend to
apply control through this current loop in the future. The module will be con-
nected via pinhead to the main board, which allows for both secure connection
and handling of this board on a protoboard, facilitating testing, maintenance,
and enhancements of this board.

Fig. 3: A rendered image of Brushless Motor Module.



ITAndroids Small Size League Team Description Paper for RoboCup 2024 5

By the end of 2023, we completed the design of the Fig. 3. We hope to obtain
the physical model as soon as possible and start testing for real application on
the robot.

2.2 Transceiver Station

To follow the development of the second generation of robots, a new radio sta-
tion is being developed for broadcast communication with the robots. The first
generation of the station was based on the 2.4 GHz RF module NRF24L01 [12]
and Arduino Uno, assembled only with jumpers, which caused frequent problems
such as poor electrical contact.

The second generation, as shown in Fig. 4, is a shield designed by ITAn-
droids for the STMicroeletronics NUCLEO-F446RE [18] development board.
This shield is a transceiver station, optimized for sending and receiving messages.
It now contains two NRF24L01 modules with antennas, which allow greater
transmission power and greater reception sensitivity. It aims to solve communi-
cation problems identified in previous competitions. Each module is configured
as RX or TX using a different channel, facilitating send and feedback interac-
tions in less complex ways. The choice to design a shield instead of a board is
to simplify the project, using internal modules on the development board. The
choice of the development board and microcontroller aims to follow the team’s
standard of developing with STM32 Microcontrollers, given the team’s greater
familiarity with this brand.

Fig. 4: A rendered image of the Transceiver Station v2 designed in Altium De-
signer.

Although for now the firmware is quite simplified to perform basic operations
of sending and receiving messages, it is expected that the new station will be



6 ITAndroids Team Description Paper for RoboCup 2024

an independent platform for testing communication and scanning excessively
busy channels in the 2.4 GHz spectrum, which could be avoided during matches,
ensuring greater reliability in communication.

3 Mechanics

The past year has seen modest progress in the mechanical development of the
ITAndroids team’s robot. Notable advancements include significant improve-
ments to the robot’s cover and the exploration of volumetry to integrate a new
kicker/chipper mechanism.

3.1 Kicker/chipper system

A new mechanical system is being developed for the kicker and chipper mecha-
nism in order to solve a lack of space problem that was occurring with the new
generation robot. We started to work with it recently, so unfortunately we do
not have results to show yet.

3.2 Cover

The steel cover used in the previous generation did not suit the needs of the
new generation robots, so a new cover made using 3D printing was developed.
The primary reason for changing the cover was its material conductivity, which
caused issues in the robot’s electrical components, in addition to its difficult
manufacturing process and less precise results. The cover model is shown in Fig.
5. It is 130.5 mm high and 89 mm in radius. The walls are 2 mm thick, printed
in PLA with a layer height of 0.15 mm.

Fig. 5: New cover.

In the near future, some changes will be made to the printing process in order
to improve the cover’s structural quality.



ITAndroids Small Size League Team Description Paper for RoboCup 2024 7

4 Artificial Intelligence

4.1 Behavior tree

Our decision making process is based on a Behavior Tree implementation, as
explained in [9], as our team has much experience with this technique [15]. The
advances we had in the last year were actually related to good coding practices
and exploring the modularity of the Behavior Tree. In this regard, we determined
the most basic behaviors we needed – such as going to a certain position, aiming
to a certain direction, kicking the ball, and chipping the ball –, trying to promote
code reuse. Then we redesigned our existing strategy, but with stronger code
standards.

4.2 Opponent Modeling Strategy

Right now, our team is developing a system to predict the trajectory of robots
on the opposing team. This system will aid in formulating more complex strate-
gies for decision-making. We are employing deep neural networks to forecast
robot trajectories within our code. These models have been trained using data
from previous RoboCup matches (position and orientation in each timestep).
Currently, we are in the testing phase, experimenting with various network ar-
chitectures (Multi Layerered Perceptrons, LSTMs, CNNs) and fine-tuning hyper-
parameters. Similar research has been carried on by former ITAndroids members
[6, 16]. However, it has not been possible yet to implement such models in real
competitions. Our goal is to learn from these previous works and develop an
opponent modeling tool that can be used properly in the RoboCup context.

Among the tools used in this study, there are:

– Keras API for neural network implementation [5].
– SSL logtools for parsing log files and use them as training and test data

(league software).
– Optuna, a python framework for hyperparameter optimization [3].

Data-driven approaches such as those mentioned offer considerable advan-
tages, as they allow robotic systems to learn from real matches data. These
strategies can improve our robots’ capability of making quick and precise deci-
sions in the complex and dynamic environment which they are immersed in.

5 Software

In this section we dive into our efforts related to our software in a general manner.

5.1 C++ Dependencies

It is a known issue for C++ developers the lack of an official dependency or
library manager. Some projects choose to compile all dependencies manually,



8 ITAndroids Team Description Paper for RoboCup 2024

others use platform-specific managers, like the package managers in GNU/Linux,
and even including in the project the source code of the version you need is a
common option. Our team has suffered over the years with this, and we have
decided to start migrating to VCPKG [2].

VCPKG, developed by Microsoft, is recognized as a promising solution to the
issue of dependency management in C++ development. Its centralized repository
of precompiled libraries and tools offers a streamlined approach to managing
dependencies, addressing a well-known problem in software development.

One potential obstacle we anticipate in migrating to VCPKG is the impact
on disk usage, particularly concerning the downloading and storage of source
code for compilation. VCPKG operates by fetching source code from its central-
ized repository and compiling it locally on the user’s machine. As a result, the
process may require significant disk space, especially for projects with extensive
dependencies. Each addition or update of a dependency through VCPKG entails
downloading the corresponding source code, contributing to an accumulation of
data over time.

5.2 Logger

In this subsection, we outline our implementation of a logger using the spdlog
library [7], tailored to meet our basic logging needs with minimal complexity.

spdlog is a versatile C++ logging library that offers simplicity and ease of
use, making it an ideal choice for our logging requirements. With its intuitive
methods and lightweight design, spdlog enabled us to quickly integrate logging
capabilities into our software without unnecessary overhead.

While our logger configuration remains basic, spdlog offers extensive cus-
tomization options, allowing us to tailor logging behavior to our specific require-
ments as our needs evolve. It supports asynchronous mode, custom formatting,
both multi-threaded and single-threaded loggers, and Qt integration. These op-
tions provide flexibility in optimizing logging performance and output according
to the demands of our application.

5.3 Path Planner

Our path planning algorithm is based on visibility graphs, as written in [9]. Over
the last year, we have made some adjustments to it, due to practical reasons.

Our algorithm considers the robot as a point and obstacles as circles, initially
with the radius of twice the radius of a robot. With the real world imperfections
and the dynamic nature of the league, it is required to increase this obstacle’s
radius. Therefore, we create a safe zone for the robots to determine paths using
our algorithm. Unfortunately, again due to the dynamic nature of the league, it
is possible for the robot to enter into this safe zone, thus originating a problem
(since for the algorithm the robot is inside an obstacle). Unluckily, if you give
your robots a bigger safe zone, this situation may occur more than you expect.

More on this problem, what you want to do if your algorithm does not find
a path is not so easy to determine. You might want the robot to just go straight



ITAndroids Small Size League Team Description Paper for RoboCup 2024 9

ahead to his destination, since in a situation where you have two robots fighting
for the ball this may be desired – otherwise you will lose each fight –. Looking
from another perspective, you might want to simply skip this iteration. Despite
the risk, we have chosen to do the first option, since in the game (in our per-
spective) it is more important to fight for the ball.

Another problem we faced was the choice of what to do with small segments
of paths. Sometimes the algorithm seems to find a path with a segment – circular
or straight – so small that it actually does not matter, and to try to follow this
segment actually decreases the performance of following the path. The difficult
part of this problem is how to find a good threshold (both for angles and for
straight lines), as there is no clear way to measure the average performance.

5.4 Testing

In this subsection, we discuss our endeavors over the past year to enhance the
testability of our codebase and to promote a culture of test-driven development
(TDD) within our robotics team. Utilizing the GoogleTest framework, we started
to integrate unit testing seamlessly into our development process.

Enhancing Testability Recognizing the importance of testability in software
development, we have made concerted efforts to refactor and redesign our code-
base to improve its testability. This includes breaking down complex function-
alities into smaller, more modular components and adhering to best practices
in software design, such as separation of concerns and dependency injection. By
designing our code with testability in mind, we aim to facilitate the creation and
maintenance of comprehensive unit tests.

Development of Unit Tests In line with our commitment to test-driven devel-
opment, we have prioritized the development of unit tests for critical components
of our codebase. Leveraging the GoogleTest framework, we have created a suite
of unit tests to validate the behavior and functionality of individual units of
code. These tests cover a wide range of scenarios, including edge cases, bound-
ary conditions, and typical usage scenarios, ensuring robustness and reliability
in our software.

Creating a Culture of TDD In addition to developing unit tests, we have
focused on fostering a culture of test-driven development within our team. This
involves encouraging developers to write tests before implementing new func-
tionality, emphasizing the importance of test coverage and ensuring that tests
are integrated into the development workflow.

5.5 Graphical User Interface

Last year, our team recognized that the GUI is a powerful tool that was underuti-
lized by us, despite its capability to offer not only visual feedback on the robot’s



10 ITAndroids Team Description Paper for RoboCup 2024

Fig. 6: Current Graphical User Interface.

actions but also an easier way of interacting with the software. Keeping this in
mind, we have focused on developing key features such as displaying valuable
information provided by the game controller and implementing new command
widgets. The current state of our GUI may be seen in Fig. 6.

The main feature we have been working on the GUI are the draw requests,
which helps us visualize the robots’ behavior and decision making. Our idea was
to make a draw requester, which the entire code can use to request a drawing
on the screen. When some part of the code calls a method requesting a drawing,
the requester implementation handles the creation of a draw request (which
encapsulates a Qt implementation of the drawing) and sends it to a buffer. As
the updating of the GUI occurs in another thread, we used a double buffering
approach: to be precise, we used two buffers for each thread that can request a
draw. This approach with draw requests was pretty much inspired by rviz and
Roboviz [13, 19].

By providing a visual representation of the robots’ behavior, the draw re-
quests not only aid in debugging and troubleshooting but also serve as a valuable
tool for refining our algorithms and optimizing performance on the field. Some
examples of them are shown in Figs. 7a, 7b, and 7c.

Expanding on this feature, we have implemented separate visualizations for
detecting and estimating the positions of the ball and robots. These visualiza-
tions, with the estimation overlaying the detection, provide us with a compre-
hensive understanding of our filtering algorithms’ efficacy during gameplay. This
enables us to obtain valuable insights for further enhancing our software’s per-
formance.

Furthermore, this approach provides an insight into how to store a replay
with the behavior of our entire code. Hence, storing the requested drawings with



ITAndroids Small Size League Team Description Paper for RoboCup 2024 11

(a) Trajectory (blue) and
planned path (black).

(b) Aiming. (c) Kicking.

Fig. 7: Examples of draw requests applications.

Fig. 8: Estimation and detection overlap.

its timestamps, we can debug what happened in the past (e.g., during a previous
match).

Another useful feature we have developed was a widget to adjust all the
parameters in real-time on the GUI, as shown in Fig. 9, whose backend was
inspired by Rhoban [14]. With almost the same code implementation, it was
also possible to create a similar widget for selecting which parts of the code its
draw requests were going to be shown in the screen, as shown in Fig. 10. The
equivalent widget to select log-related options is yet to be developed.

6 Control

Last year, our control team had focused more on upgrading low-level controllers,
by experimenting new control topologies for motor control and new ways to
obtain its gains, such as considering the whole robot’s dynamic [4]. As we are



12 ITAndroids Team Description Paper for RoboCup 2024

Fig. 9: Tree including all parameters.

Fig. 10: Tree to select which requests to show on the GUI.

still on early stages of this work, unfortunately we do not have any major result
about it to show yet.

Another work we had, a more practical one, as we migrated to a new robots’
generation, was to implement a new motor model on our simulations for the
obtainment of motor control’s gains.

7 Conclusion and Future Work

This paper describes some of our efforts during the year of 2023 and for the next
months until RoboCup 2024. As we are only starting to have our spotlight on
SSL scenario, we are also looking forward as we hope to be open source soon.
For RoboCup 2024, we hope to have an improved version of the ideas that are
in progress, in addition to applying some of the prototypes that we have been
working on since 2023.



ITAndroids Small Size League Team Description Paper for RoboCup 2024 13

Acknowledgment

We would like to acknowledge the RoboCup community for sharing their devel-
opments and ideas. We especially acknowledge RoboFEI, Skuba and TIGERs
for open sourcing their electronic and mechanic designs. Moreover, we would
also like to thank members of CMDragons, RoboFEI and RoboIME for helping
in various contexts. Finally, we thank our sponsors Altium, CENIC, Field Pro,
Intel, ITAEx, MathWorks, Micropress, Neofield, Polimold, Rapid, Siatt, Solid-
works, ST Microelectronics, Virtual Pyxis and Visiona.

References

1. Freertos™. https://www.freertos.org/index.html (2023)
2. vcpkg: A c++ package manager for windows, linux, and macos. https://github.

com/microsoft/vcpkg (2023)
3. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-

generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (2019)

4. Celso, F., Maximo, M., Yoneyama, T.: Model predictive control for omnidirectional
small size robot with motor and non-slipping constraints. (2023)

5. Chollet, F., et al.: Keras. https://keras.io (2015)
6. Coimbra, F.: Opponent modeling by imitation in robot soccer (2021)
7. Gabriel Simões: spdlog c++ logging library. https://github.com/gabime/spdlog

(2023)
8. Gonçalves, A., Freiberger, A., Martins, A., Penna, A., Moreira, B., Yamamoto, B.,

Simplício, E., Morais, E., Pironi, G., da Hora, G., Mendes, L., Neves, L., Zoppi,
L., Maximo, M., Martins, M., Egger, M., Pedroso, M., Farias, N., Barros, V.,
Wakugawa, V., Queiroz, Y.: ITAndroids Small Size Soccer Team Description Paper
for RoboCup 2023

9. Maranhão, A., Schuch, A., Azevedo, A., Rodrigues, A., Lima, E., ao Sarmento,
J., Santos, M., Maximo, M., Sales, M., Dias, M., Lima, R.: ITAndroids Small Size
Soccer Team Description Paper for RoboCup 2020

10. Maxon: Maxon EC-45 Flat Brushless Motor 50W Datasheet. https://www.
maxongroup.com/medias/sys_master/root/8833813119006/19-EN-263.pdf

11. Microsystems, A.: Datasheet A3930. https://www.allegromicro.com/~/media/
Files/Datasheets/A3930-1-Datasheet.ashx?la=en

12. NordicSemiconductor: nrf24l01+. http://www.sparkfun.com/datasheets/
Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.
pdf

13. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng", A.: "ros: an open-source robot operating system". In: "Proc.
of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open
Source Robotics". Kobe, Japan (May 2009)

14. Rouxel, Q., Passault, G., Hofer, L., N’Guyen, S., Ly, O.: Rhoban hardware and
software open source contributions for robocup humanoids. In: Proceedings of 10th
Workshop on Humanoid Soccer Robots, IEEE-RAS Int. Conference on Humanoid
Robots, Seoul, Korea (2015)



14 ITAndroids Team Description Paper for RoboCup 2024

15. Silva, G.L., Maximo, M.R., Pereira, L.A.: A minimalist open source behavior tree
framework in c++. In: 2021 Latin American Robotics Symposium (LARS), 2021
Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Ed-
ucation (WRE). pp. 306–311. IEEE (2021)

16. Steuernagel, L.: Opponent modeling for robocup small size league robots (2021)
17. STMicroelectronics: STM32H753xI (April 2019), rev 7
18. STMicroelectronics: STM32 Nucleo-64 Boards User Manual (August 2020), rev 14
19. Stoecker, J., Visser, U.: Roboviz: Programmable visualization for simulated soccer.

In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011: Robot
Soccer World Cup XV. pp. 282–293. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)


