OrcaBOT Team Description Paper 2024

Tongthai Thongsupan, Ned Sureechainirun, Warit Yuvaniyama,
Athit Tantipjitkasem, Piyamin Sripho, Siriyakorn Sucharitjivavongse,
Julathit Chetsawang, Phisitphon Pruksorranan, Kaweewat Sricharoenchit,
Nuttaat Sricharoendhum, Pramat Anuntanasarn, Pakorn Limpornchitwilai,
Nipparn Penjinda, and Natthaphak Suesakulchockchai

Sirindhorn International Institute of Technology,
Thammasat University, Rangsit, Thailand
Thai_23Qoutlook.co.th
https:/ /siit-robocup.netlify.app/

Abstract. This paper describes the details of the proceeding Small-
Sized League robots from the second-generation OrcaBOT team. This
year TDP, the team will prioritize the feasibility and stability of the
robot, to improve and fix non-fulfillment from the first-generation team,
from mechanical and electrical design that focuses on down-scaling the
components to new communication and strategy in software.

1 Introduction

OrcaBOT has debuted in Small-Size-League Robocup 2023, Bordeaux. The team
has gained valuable experience and found several areas for improvement. The
second-generation team has undergone significant changes across many areas.

Mechanically, the most significant change involves the dribbler mechanism,
changing from a 90-degree by 90-degree configuration to a new design with a
26.5-degree horizontal axis orientation. Electronically, the core processing unit
of the new main board remains the Arduino DUE with major changes in motor
drivers and kicker circuits. Low-level software continues to utilize pySerial Trans-
fer while redesigning the system to be more optimized. High-level software has
implemented simulations to enable better strategy testing within our software
development process.

2 T. Thongsupan et al.

Fig. 1: The Overall Design of OrcaBOT Team’s Robot for RoboCup 2024.

2 Mechanical Design

This section of the paper will illustrate our modifications to the mechanical
structure concerning any citation applied to our team’s policy and strategy. As
shown in figure 2, 2024 OrcaBOT’s mechanical design has changed significantly
in all aspects, such as robot structure, dribbler, kicker, gearbox, and wheel.

2.1 Motors Specification

As for this year, we used 10-bit precision control Maxon EC45-flat motors, which
have a resolution of 1024 steps|[2], as driving motors with specifications as in table
1. While the specifications did not differ much from last year’s motors (Nanotec
DF451.024048-A2), we use the Maxon DEC 24/2 digital brushless amplifiers to
drive the Maxon motors. We used Skywalker V2 40A ESC the previous year
to control the motors with Arduino using the Servo.h library, capable of 180
steps (120 steps in practice), which precision cannot achieve our satisfaction.
Additionally, the Servo.h library induces a small delay for each motor drive,
which results in unwanted motor desynchronization added to the overall error.
With the new amplifiers, we developed our own Arduino library to drive the
Maxon motors with an 8-bit digital potentiometer, which yields greater accuracy
of up to 256 steps based on the capability of the potentiometer.

OrcaBOT Team Description Paper 2024 3

Table 1: Specification of Maxon EC45-Flat Motors for Robot Wheels and Maxon
EC16 Motor for Robot’s Ball Dribbler.[3]

Specification Maxon EC45-Flat Maxon EC16 Motor
No. of Pol/Phase 8/3 1/3
Nominal Voltage (V) 12 12

No Load Current (mA) 163 397
Nominal/Stall Current (A) 2.02/10 3.41/29.8
Terminal Resistance (£2) 1.2 0.403
Terminal Inductance (mH) 0.56 0.0235
Nominal/Stall Torque (mNm) 55/255 7.85/75.5
Torque Constant (mNm/A) 25.5 2.54

Power Rated (W) 30 30
Nominal/No load speed (RPM) 2940/4370 39300/44500
Rotor Inertia (g - cm?) 92.5 92.5

Weight (g) 75 75

2.2 Core Structure

The overall structure of the robot is the same. However, the 90°configuration
base used by the OrcaBOT team in 2023 (¢ = 45°) is changed to a 128°configuration
base (¢ = 26.56°) while retaining the same functionality, like robot stability and
movement along with the new motor and wheel design provide more available
space, to accommodate electronic components. The design used by OrcaBOT
in 2023, the motors are positioned very close to each other, causing noise inter-
ruption created by magnetic fields generated by another motor close by, causing
discontinuous rotation. For the 2024 OrcaBOT team’s design, the first floor con-
sists of a dribbler, two solenoids, and four motors are anchored to the motor-base
plate that supports the second floor, as shown in figure 2. Moreover, a motor-
base plate is also used to lock the second floor in place and make it sturdy.
The second floor and third floor (PCB) are mainly for the electrical circuits and
battery placement. Poles grounded on the second floor provide support for the
PCB on the third floor. We changed the structure materials from aluminum to
PLA because of the ease of prototyping, repairing, and reducing costs.

4 T. Thongsupan et al.

(a) 2023 OrcaBOT’s Design (b) 2024 OrcaBOT’s Design

Fig. 2: OrcaBOT design iterations

Fig. 3: 2024 OrcaBOT’s design (left) and 2023 OrcaBOT’s design (right)

2.3 'Wheel Mechanism Redesign

For the wheels, we have chosen omnidirectional wheels to allow free movement
in all directions. However, the wheel design used by the 2023 OrcaBOT team as
shown in Figure ?? turns out to be too thick, expensive, and has poor traction.
As a result, the current wheel design, as shown in Figure 4b, will be redesigned
to fix these issues. We used PLA as the material for the wheel body and sub-
wheels. We changed the transmission design from a pinion-pinion connection to
a pinion and ring gear with a ratio of 11:30, where the pinion is the driver gear,
based on the Skuba team’s design[7] in 2010. This will provide the wheel with
more torque and more precise movements. In addition, with the new design, the
motor base plate and wheels are smaller than the design used by the previous

OrcaBOT Team Description Paper 2024 5

year’s team, increasing space for other components, as mentioned in the core
structure part.

lijd

(a) 2023 Wheel Design (b) 2024 Wheel Design

Fig. 4: The prototypes

(a)

Fig. 5: 2023 OrcaBOT design with Revolute Type Dribbler Design (a) and 2024
OrcaBOT Design with Slot Mechanism (b)

2.4 Ball Dribbler

The redesign of the dribbler is based on force analysis on the free body diagram
[5], which is shown in figure 6 and also expressed as equations by representing
the forces acting on the ball during its movement as equations 1 and 2. To
be more efficient, we have also set the conditions to satisfy the function of the
condition on point A in figure 6, which is a contact point between the roller and
the ball that must be rolled without slipping when the roller catches the ball.
The condition to satisfy rolling without slipping can be expressed as equations
1 and 2.

6 T. Thongsupan et al.

ZFzZNCOSG—NbaHM— =0

ZF ZNSine—Nbau:O

r
R

Vem, ball = LW

Gcm, ball = Ra

Vem, ball

A

Fig. 6: The Illustration of The Free-body Diagram.

Where F, and F, in the first and second equations represent the forces acting
in both the X-direction and the Y-direction, respectively, while 7 represents
torque. Moreover, in equations 3 and 4, the radius of the ball is numerically
represented by R, while the radius of the roller is . For the angular acceleration
and angular velocity, they are presented by « and w, respectively.

According to this analysis, we decided to design a new dribbler with a semi-
adjustable type that can move up and down to use robot weight to generate the
vector force on the ball, as can be seen in the analytical free body diagram 6.

OrcaBOT Team Description Paper 2024 7

Both the 2023 and the 2024 designs share the same idea but in different ways,
as can be seen in fig. 5. For the 2023 model, we use a revolute dribbler to rotate
and move, respectively, the approaching force from the ball. For the 2024 model,
the slot mechanism is applied to use the robot’s weight as a force vector point
on the ball.

2.5 Solenoid

We used a solenoid in the market and replaced its original housing with a double-
layer housing solenoid as shown in figure 7. The upper solenoid will pull the chip
to chip up the ball. The lower one will punch the ball directly.

Fig. 7: First Prototype of Kicker Circuit

3 Electronic Design

3.1 Main Board Design

The board design architecture is based on the same idea as last year, using
Arduino DUE as the core processing and control unit. However, the motor con-
troller is different from the previous year’s design. DEC 24/2 is the choice for
this design. This particular module can be used with the Maxon EC45 and has
a resolution of 1024 steps, which is higher than the ESC used in the previous
year with only a resolution of 180 steps.

3.2 Kicker Circuit

The kicker circuit is the most challenging design part of all the parts. So, the
priority of the design is to make it capable of pushing the ball forward. The team

8 T. Thongsupan et al.

decided to start with a step-up boost circuit before connecting it to an external
capacitor capable of charging the capacitor as fast as possible. In the previous
year, an Arduino Nano was added to the kicker circuit to be a node for kicker
control, as this Arduino module uses a logic voltage level of 5 Volts. However,
the circuit experienced a fetal failure on overvoltage, causing the MOSFET to
burn. For this year’s prototype, the team decided to remake the kicker circuit
using MC34063A in figure 9, which is capable of step-up 12-40 Volts as the
experimental version based on open source and connected to the main control
board, making it easier to control.

(a) 2024’s Main Board Design (b) 2023’s Main Board Design

Fig. 8: The Main Board

/ 2398710A.Y19-248111

Fig. 9: First Prototype of Kicker Circuit

OrcaBOT Team Description Paper 2024 9
4 Software

4.1 System Overview

The systems responsible for the robots’ actions comprise a high-level decision
system and a low-level communication-control system. The high-level system is
a group of software that takes input from field cameras and computes actions
for each robot in the field. Starting from the camera, we set up and calibrated
our camera to be compatible with the open-source SSL-Vision software. Sub-
sequently, SSL-Vision sends the captured data from the field to the strategy
software, which will decide the best possible course of action for each robot. Af-
ter the strategic software has initiated the action-related decisions, the data will
then be encoded into a Python dictionary and sent to the communication sys-
tem using our pySerialTransfer-based software, which further encodes the data
to JSON format and transfers it to the Arduino communication board through
a serial port. The communication board then deserializes and packetizes the
data and sends it individually through radio to each robot address using the
nRF24L01+ module.

4.2 Low-Level Design
Communication

e Analysis of 2023’s Communication System

Being a first-time participant in SSL-Robocup in 2023, due to limited man-
power and time constraints, the communication system was not the main
focus during software development. This resulted in a suboptimal communi-
cation system with compatibility issues between hardware and software.

In 2023’s communication system, we used pySerialTransfer library to send
robot data (robot ID, motor power, and kicking status) from Python to
Arduino. This data was sent with six “|” separated sections, each containing
a four-digit signed integer, as shown below.

"0000 | 0000 | 0000 | 0000 | 0000 | 0000
ID MO M1 M2 M3 kick

Fig. 10: 2023’s Communication Protocol

While convenient to code and understand, this system had a low transmis-
sion rate due to an inefficient encoding/decoding design and poor usage of
the nRF24 radio. Sending data in string format with extra zeros and “|”
symbol wastes transmission buffer spaces, limiting the rate to 1 packet per

10

T. Thongsupan et al.

transmission. The choice to parse data in Arduino further increases com-
munication time. Overall, the communication process took over 1 second
to send a command to 6 robots, which is not applicable in real-time SSL
matches. Moreover, the broadcasting nature made it vulnerable to packet
loss and interference, as the team experienced last year at the Bordeaux SSL
Robocup 2023 competition.

e 2024’s Communication System

Competitive Field

Robo_IDO
Robo_ID1
Communication Board
Serial Port . Radio Robo_ID2
EE—" Arduino DUE — nRF24L01+ -@)) cOmmu"icaﬁon((‘ [] —
Host Computer Serial Transfer nRF24 (max 32 byte) Robo_ID3
pySerialTransfer Arduir:onon -
Robo_ID4
Robo_ID5

Fig.11: 2024’s Communication Diagram

As our new high-level system runs on rospy, a Python-based system, pySe-
rial communication from last year is retained. However, the communication
system was redesigned to maximize the performance of pySerial Transfer and
the RF24 library for the best connection amongst high-level, low-level, and
robot movement.

The new communication system is designed to minimize the communication
time from both pySerial and nRF communication by pre-computing the data
on the computer before transmitting it to each robot, minimizing parsing and
calculating that needed to be performed on the Arduino DUE. The current
configuration can reduce the communication time from over 1 second to
approximately 50-100 milliseconds, with fewer lags and near-zero data loss
(when mounting hardware securely).

Due to pySerial Transfer with 254-byte data packet size, a better data packing
strategy is implemented, capable of packing the data for 3 robot IDs using
only a single packet. The data is structured into 2 sets of dictionaries. Each
dictionary has a robot ID as a key and the list as a value. The list contains
motor powers, kicker statuses, and dribbler statuses respectively, as shown
below.

OrcaBOT Team Description Paper 2024 11

{robotld : [Motoro, Motor1, Motora, Motors, Kickery, Kickerz, Dribbler] }

Fig. 12: 2024’s Communication Protocol

The dictionaries will be encoded into UTF-8 formatted string, then to JSON
document, using the pySerialTransfer library. This method is more scalable,
faster, and easier to parse by the robot command sender at the receiving
ends of the Serial Stream.

The JSON([1] formatted data will then be sent to the communication board
(robot command sender) that parses the incoming stream from the serial
port and deserializes the data using ArduinoJson 6 library. The data will be
parsed by the robot command sender and repackaged into a pre-formatted
24-byte structure, ready to be sent to each bot using the nRF24L014+ mod-
ule. With the Enhanced ShockBurst™ Protocol along with a 2 Mbps trans-
mission speed, the data can be transmitted fast and securely with its auto-
acknowledgment package and auto-re-transmission when the acknowledg-
ment packet is not received back to prevent the data from being lost along
the communication. The communication diagram is shown in figure 11

4.3 High Level Design
e SSL Vision

Our system utilizes SSL-Vision, the open-source software provided by the
SSL- community. The data received from the camera allows us to obtain the
positions of all robots and the ball, which we then package into a message
and transmit to our strategy by using Google Protocol Buffers. We drew
inspiration from the python-SSL-client open-source code base to develop
our program, which listens for messages, communicates with the strategy
program, and displays message data in the console.

Regarding the information from SSL-Vision, it provides us with two types of
data packets: detection data, which includes detection results of robots and
balls captured by the camera, and geometry data, which includes information
such as field dimensions. Some components of the latter can be obtained
through camera calibration, which can be performed using SSL-Vision.

e Camera Settings for Linux

Due to the complexity of the Linux system, we could not properly integrate
our camera driver into the SSL-vision. With that problem, we could not con-
figure the camera setting within the SSL-vision system. Therefore, we have
opted to develop an application using Python to address the challenge. We
developed a user-friendly GUI featuring sliders for adjusting key parameters
such as brightness, contrast, saturation, and sharpness. Additionally, users
can define both the maximum and minimum limits for each parameter. The

12

T. Thongsupan et al.

settings can be conveniently saved in a .txt file, allowing for quick retrieval
of previous configurations. Furthermore, if the device has more than one
webcam, this application can select which one’s settings will be adjusted by
changing its webcam path. Our application helps the SSL-vision distinguish
the robots on the field.

Strategy Design

The high complexity of code used by the team the previous year along with
the lack of simulations integrated into our system poses a challenge in terms
of dependencies. SSL-vision, SSL game controller, and grSim are connected
using ROS with Google Protocol Buffers. However, in the previous year’s
system, we only used Google Protocol Buffers which is challenging to our
predecessor in scalability and connecting SSL-vision, game controller, and
simulation.

Additionally, because most of our software members are familiar with de-
veloping code in the Windows Operating System, we tried to run the whole
system in Windows. However, the system is required to be run on Bash Shell.
So, we implemented our system on Windows Subsystem for Linux (WSL).

/Irobot_blue_2

|

Irobot_blue_2/cmd

/robot_blue_4

)

Irobot_blue_4/cmd

/robot_blue_3

/robot_blue_3/cmd
/robot_blue_1
Irobot_blue_1/cmd

\/robot_blue_o

Irobot_blue_0/cmd

Ivision

Ivision_comm_node /arsim_ros_bridge_node

|

Fig.13: RQT Graph of grSim

The software team initially attempted to develop the system entirely within
Windows due to their familiarity with the environment. However, integrat-
ing core components with grSim[4] proved challenging without a native Bash
shell environment. We explored Windows Subsystem for Linux (WSL), but
its limitations for device connectivity (particularly with the camera and com-
mand sender board) made it unsuitable. To ensure functionality and stream-
line communication between high-level and low-level components (leverag-
ing the grSim-ROS-bridge[6]), we opted for a dual-boot configuration with

OrcaBOT Team Description Paper 2024 13

Ubuntu. This grants us the necessary flexibility in tool selection and removes
the port-mapping limitations imposed by WSL’s virtual machine environ-
ment.

Fig. 14: The Simulation Runs With Strategy Software

e Simulation

The simulation part is used to simulate how implemented instructions will
drive the mechanics and check for errors in communication among strat-
egy, skill layer, and nodes. The lack of a simulation system compatible with
Google Protocol Buffers since last year has prevented us from creating simu-
lations to test our strategies. Hence, this year we implemented a Simulation
part to help us conveniently communicate with Google Protocol Buffers.

e Skills

This layer oversees the transmission and execution of Python codes, and the
connection between high-level and low-level. In essence, we developed Skill
Node to serve as the intermediary, allowing every Skill to interact with nodes
and packages, then send it to both grSim ROS bridge and low-level to be
integrated. Last year, as we had a problem with communication/connection
between low-level, in order to solve the problem, we created Node to be used
for checking the connection between low-level and high-level to be more
convenient to detect possible failure. Furthermore, more connections can be
added in the future.

14 T. Thongsupan et al.

o Utility

At the moment, the Utility layer contains the decision package, which is as-
signed to communicate with low-level components and determine the strate-
gies to be executed. The underlying concepts of the decision package revolve
around the scenario where the high-level system sends packages to the low-
level system. It could encounter challenges in processing all the information
simultaneously and end up checking only the most recent package. Con-
sequently, we adopt the decision package to act as a buffer, delaying the
transmission of information to the low-level system for it to appropriately
handle and prevent possible errors.

e Sequence

The Sequence layer is made up of a set of actions that configure the robot’s
movement. Skills utilization comes from the Skills layer, it enables the robot
to execute different maneuvers, like moving back and forth and avoiding
obstacles by moving to the predefined point, all in a sequential manner.

5 Conclusion

This TDP mentioned the changing of the robot in several aspects, from mechan-
ical, electronic, low-level, and high-level respectively. All adjustments are based
on experience and the blunders that the first generation faced. The mechanical
part has changed the core structure to be able to accommodate more space for
electronic design. The electronic design focuses on precision drive for the motor
and kicker circuit. Low-level works on the newer and more stable communication
system using JSON instead of pySerial used in the previous year. High-level is
currently working on simulation using ROS-bridge with grSim to design strategy.

6 Acknowledgement

We would like to thoroughly express our dearest gratitude towards the finan-
cial sponsorship provided by the student affairs division of SIIT, as well as to
gratefully acknowledge Assoc.Prof.Dr.Paiboon Sreearunothai for being our club
advisor and Dr.Maroay Phlernjai for helping with technical support throughout
the course of this robotic development.

OrcaBOT Team Description Paper 2024 15

References

1. Blanchon, B.: Documentation — arduinojson.org. https://arduinojson.org/v6/doc/

(2024)

2. Maxonmotor: maxongroup.com. https://www.maxongroup.com/medias/sys_
master/-root/8816803348510/15-201-EN.pdf (2024)

3. Maxonmotor: maxongroup.com. https://www.maxongroup.com/medias/

sysmaster/root /8882562924574 /EN-21-295.pdf (2024)

4. Monajjemi, V., Koochakzadeh, A., Ghidary, S.S.: grsim—robocup small size robot
soccer simulator. In: RoboCup 2011: Robot Soccer World Cup XV 15. pp. 450-460.
Springer (2012)

5. Perez, B., Lam, D., Challa, S., Fu, K., Gynai, H., Sohrab, A., Clark, C., Srinivasan,
A., Gordon, A.: Robojackets 2022 team description paper (2022)

6. R.Grando, J.Dyonisio: GitHub-jardeldyonisio/grsim_ros_bridge: Simulacdo para
competicao UruCup. https://github.com/jardeldyonisio/grsim_ros_bridge (2022)

7. Wasuntapichaikul, P., Srisabye, J., Onman, C., Damyot, S., Areeprasert, C.,
Sukvichai, K.: Skuba 2010 extended team description. Proceeding of Robocup
(2010)

