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Abstract. This paper describes the development of our overall robot
design, including developments over the past year, and the assembly of
functional autonomous robots aiming to compete in the 2024 RoboCup
Small Size League tournament in Eindhoven, the Netherlands. Compared
to last year’s theoretical design with only the drive train actualized
for practice, this year’s development added more capabilities to our
robots. These include, but are not limited to, improvements to obstacle
avoidance algorithm, controlled omni-directional movement and PID
tuning, shooting decision-making and directional kicking, coordinated
passing between two actors, and dribbling while in motion. We took
an approach that prioritized mastering basic functionality and largely
ignored complex maneuvers and skills.
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1 Introduction

The 2023-2024 season is TritonRCSC’s fourth attempt at participating in the
RoboCup Small Size League competition. Most of the team leads this year joined
the team last year, which allowed them to rework the structure of the team,
and streamline each sub-group’s work. This helped us to be able to engineer
working robots this year. Some highlights of this year’s development includes
the mechanical design which further modified to facilitate the ease of complex
calculations done on the Raspberry Pi and STM32 microcontroller, the dribbler
that makes use of rubber for traction, and drivetrain that adopts software PI
for stability. As for the kicker, we use a boost converter to charge our capacitor.
We decided to perform Body-to-Wheel velocity calculations on the Raspberry Pi
instead of the STM32 MCU embedded on the RoboMaster Development Board
for faster and easier processing on a more powerful board [6]. Our AI has been
redesigned as well, utilizing a Behavior Tree instead of a Skill System [1]. Current
work focuses on interfacing between the distinct parts of the design.

2 Mechanical Design

2.1 CAD Design

One of our main early considerations was speeding up the prototyping and
testing process, which was very slow previously as many of the designs were fully
3D printed. Since our designs consisted of 3 circular flat layers (Figure 1), we
decided to opt for laser cutting these layers out of acrylic instead of 3D printing
them, which saved us a lot of time when testing new layer designs and mounting
configurations. In addition, the 3/16th inch laser cut acrylic proved to be much
stronger and rigid than the 3D printed discs we were using with the prior designs.

Another major change was switching from a 90 degree motor separation to a
design that separated them by 120 and 60 degrees (Figure 2). Initially, we wanted
to provide a basic drive train that was easy for the embedded software team to
design a controller for motion around. After they were done, we switched to the
latter orientation to fit the dribbler, kicker, and battery on the first layer.
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Fig. 1: 2024’s Redesigned exterior CAD chassis

Fig. 2: Old (90 degrees) vs. New (60-120 degrees) Base Plates

Furthermore, we are using the wheel motor mounts as structural support to
connect the first and second layers. Before, we had separate structural components
that connected the layers, which were usually weak due to awkward placement.
Also, they took too much space out of the small body. Utilizing the motor
mounts as structural support allows us to save space and provides even weight
distribution. The new structural supports between the second and third layers
take their form from the design of the c-shaped motor mounts, obviously being
different in that they don’t have screw holes and openings for motors. This design
allows even distribution of the third layer’s weight and provides us ample space in
the area between the second and third layer. Currently these mounts/structural
supports are 3D printed with PLA; however, we plan to fabricate them with
sheet aluminum or steel in the near future.

The final addition we made was a part that fixes the battery in place. We
decided to have the battery sit on the first layer of the robot, in between the
motors, which keeps the center of gravity low. Thus, we needed some way to
constrain it. Ultimately we did this by making a part that hangs down from
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Fig. 3: 2024’s Physical Robot Construction

the second layer which constrains the top half of the battery, preventing it from
shifting and sliding.

2.2 Dribbler

One of our primary objectives early in the design process was to streamline
functionality by consolidating the mounting for both the dribbler and the kicker
into a single unit. We introduced a ceiling to suspend the motor, thereby freeing
up space, albeit requiring the solenoid to be relocated off-center. To address this
adjustment, we engineered a small extension platform to augment the contact
area between the solenoid and the ball.

Integrating the dribbler and kicker mount with the rest of the robot posed
another significant challenge. To circumvent interference from the wheel motors,
we strategically removed excess material from the bottom of the mount. To
achieve the desired functionality, we also implemented a pair of gears to alter
the axis of rotation. Additionally, we designed an X-shaped support structure to
fortify the mount against the vibrational forces exerted by the dribbler motor
during testing (Fig. 4).

While our prototype featured numerous 3D-printed components, it became
evident that the dribbler mount necessitated enhanced durability to withstand
the motor’s high velocity. Thus, our focus for the final robot iteration will
prioritize manufacturing the dribbler mount from metal, ensuring its resilience
and longevity in the demanding competition environment.
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Fig. 4: Dribbler

2.3 Kicker Plunger

Fig. 5: Plunger Front And Rear View

Being able to kick the ball with precision is imperative. With a solenoid
being used as the kicker, a ”plunger” is mounted onto the solenoid. This plunger,
boasting an expanded surface area, significantly facilitates the establishment
of contact with the ball, thereby enhancing precision. Through its elongated
structure, the plunger optimizes the reach of the kicker, ensuring maximal force
transmission upon impact with the ball. By principles of momentum and energy
transfer, the distance the solenoid continues to travel impacts the total force
exerted onto the ball. When the solenoid initially makes contact with the ball, it
imparts a certain amount of momentum to the ball. The force exerted on the ball
is determined by the rate of change of momentum, which is directly related to
the time over which the force is applied. Therefore, as the solenoid continues to
travel forward after contact with the ball, it effectively prolongs the duration over
which the force is applied, potentially increasing the overall impulse delivered to
the ball.

Relevant equations: J = F∆ t → Larger change in t, larger impulse

Engineered to withstand deformation forces, the plunger incorporates a rein-
forced ring structure on the shaft behind the main rectangular point of contact
with the ball to mitigate the risk of fracture when kicking.
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3 Electronics

3.1 Kicker Board

The fundamental mechanism of our kicker board revolves around charging high-
power capacitors and swiftly discharging them through a solenoid to achieve rapid
extension and retraction of the plunger. We are currently experimenting with
the use of high-power boost converters to charge capacitors in a safer manner,
and this concept has been successfully implemented.

When initially designing the kicker circuit, we incorporated a capacitor
parallel to the inductor solenoid, utilizing a switch to connect the capacitor loop
to the solenoid loop. However, we encountered issues with the fuses in our boost
converter repeatedly blowing, indicating a current flow exceeding 10A.

Fig. 6: Initial Kicker Circuit

Upon closer examination, we identified the absence of a flyback diode parallel
to the inductor as a potential cause [12]. Despite adding the flyback diode, the
fuse-blowing situation persisted. Subsequent research suggested that the rapid
voltage change across the capacitor was leading to a significant inrush current.

Iinrush = Cload
dV

dt

To address this, we turned to capacitor transient analysis and determined that
increasing the time constant of the capacitor was necessary. To achieve this, we
introduced an input resistance to slow down the voltage rise time across the
capacitor, therefore successfully in mitigating the fuse-related issues.

In the course of our research, we drew inspiration from the kicker designs of
other teams, particularly TIGERs-Mannheim [3]. However, we opted for using
an NMOS to control the kicking mechanism instead of a BJT. This decision was
based on the belief that MOSFETs perform better in high-current, low-kicking-
frequency situations—attributes that align with the requirements of the kicker
circuit.
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In the process of implementing NMOS, we noticed that if we directly connect
the gate to the RoboMaster and the ground, we risk the possibility of the gate
node having no clearly defined voltage. Therefore, to address this issue, we added
a pull-down resistor between the gate of the NMOS and ground to prevent floating
node.

Fig. 7: Qualification Kicker Circuit

Our next steps involve conducting experiments with both BJT and MOSFET
as switches to compare their performance, helping us make an informed decision
on the best approach moving forward.

4 Embedded Systems

Embedded systems are responsible for the integration of hardware and software
on the robots. Our goal is to establish a robust network of communication between
the physical movers of the system, or actuators, and the software-coupled sensors
to exchange data efficiently.

4.1 Drive Train

We are continuing using DJI Robomaster M2006 P36 Brush-less motors, C610
Electronic Speed Controllers, and the Robomaster Type A Development Board
since we made progress with them last year to move our wheels [1].

After monitoring the behavior of our robot’s motion with the omni-wheels
located at 90 degrees from each other, we increased the angle for the wheels to
be at 60 degrees on the left and right and 120 degrees on the front and back
to accommodate our dribbler, kicker circuit, and battery on the first level. For
initial motion testing, we modeled standardized equations for all axes of motion,
and the choice of angles simplified the robot’s movement commands. Even then,
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we had drift when using the simple command of ‘move forward,’ which is why
we wanted to implement a PID control algorithm using motor encoders (Section
4.3).

4.2 Communication

For communication between the RM and Raspberry Pi, we have UART with
Interrupt working to send and receive signals from the Raspberry Pi 4 Model
B. We have been using UART to print debug messages from the RM using
PuTTY, so we decided to implement it with the Raspberry Pi to focus on other
tasks with higher priorities. Previous teams had planned on establishing USB
communication between the two boards; however, UART with a baud rate of
115200 has been proven to be stable and fast enough for our purposes [10].

4.3 Ongoing Experiments with Control Systems

As stated in projected goals by the previous year’s team, we have implemented a
PI algorithm on our embedded systems for better stability during the competition
[1]. We use software PI by using data from our encoders as feedback to the motors.

However, we still see some drift in our robot motion, which is anticipated to
be a consequence of slow settling time of the PI control algorithm. In order to
tackle this, we are planning on introducing the derivative term by differentiating
the difference between the encoder data and reference value [11]. To obtain a
derivative of the difference, the RPM data from motor encoders will be smoothed
through exponentially moving average (EMA): by reducing the discontinuities
introduced to the motor encoder as a result of noise, we may calculate derivative
values that are within a reasonable range.

As a final step on refining the PID, we will continue experimenting with
different P, I and D coefficient values to obtain superior settling times.

5 Software

5.1 General Setup

The general software setup continues to be the same as last year’s, as illustrated
in Figure 8. Both TritonSoccerAI and TritonBot use a simplified Publisher-
Subscriber system for convenient inter-modular communications, facilitated via
RabbitMQ and User Datagram Protocol (UDP).
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Fig. 8: General Module Setup

5.2 TritonSoccerAI Software (Java)

Following last season’s AI redesign to a Behavior Tree based system, which allowed
for greater speed and efficiency, we have continued to make progress on improving
baseline gameplay with changed to our obstacle detection and representation,
implementation of coordinated passing, implementation of responses to referee
commands, and more.

As we made the choice to have each individual robot run its own behav-
ior tree and therefore make decisions independently, which allows for greater
speed but poses robot coordination challenges, we have looked into optimizing
coordination-related actions such as moving into formations, passing, and plan-
ning and executing plays. While a multi-agent approach is more advanced and
more difficult to work with and correctly implement, we believe it is the correct
choice as it brings us closer to one our main team objectives: replicating the way
humans play soccer.

5.3 TritonBot Software (Python)

TritonBot will run on the Raspberry Pi, which is installed on every robot and
serves as an intermediary communicator that transmits commands from Tri-
tonSoccerAI to embedded systems. To receive the commands from TritonSoccerAI,
each robot acts as its own UDP server, receiving commands from the TritonSoc-
cerAI client. The commands received from TritonSoccerAI are vectors in global
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space that get converted from global space to local space to wheel space by
TritonBot’s processing modules. Each processing module connects to each other
over RabbitMQ which takes the role of an intermediate buffer.

In competition set up, TritonBot now sends motor commands to the embedded
systems Robomaster through UART instead of USB, as was the case last year.
This mode of communication involves the use of two channels, namely TX and
RX, to transmit and receive signals. Specifically, the TX pin transmits signals
to the peripheral while the RX pin receives signals. We opted for this mode of
communication due to its simplicity in terms of connections, as it requires only a
few pins and a single wire. Additionally, since we only intend for the Raspberry
Pi to transmit data and for the RoboMaster to receive it, the simplicity of the
communication method was deemed sufficient. Despite being an older form of
communication, we found available code to establish and facilitate communication
between the boards.

5.4 Obstacle Representation

Our previous obstacle-avoidance system incorporated circular-shaped bounds
around each robot. The penalty of the nodes within the calculated boundary of
each robot was set to be large, so that the algorithm for each robot will choose a
path with less penalty and hence will not run into the other robots. However,
circular-shaped bounds are quite restrictive, as we realized that we don’t need to
account for directions the specific robot is not heading towards. For example, if
the robot is moving forward, we don’t need to avoid the space to the sides of it.

Fig. 9: New Ovular Obstacle Representation

This is why we decided to implement ovular-shaped bounds for each robot, so
that we have a maximum radius for obstacles directly in line with the robot and
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a minimum radius for obstacles perpendicular to the direction in which the robot
is heading. See Figure 9. We did this by using the properties of the dot product
and the robot’s direction and velocity vectors. If the direction vectors between
the robot’s velocity and the obstacle are in line with each other, the dot product
will be its maximum value, meaning that the boundary will be larger in that
direction. On the other hand, if the obstacle and robot are perpendicular to each
other, the dot product will be 0, meaning we can have a minimal boundary in
that direction. Since we don’t want the boundary to be absolute 0 at any point,
we compare the calculated dot product and a minimum penalty factor, and then
take the maximum of the two for the actual penalty factor. We then multiply
this factor with a node penalty constant.

This new method allows for obstacles to scale in size based on the velocity
of the corresponding robot. In our tests, we have observed that robots often
move into closer proximity of others but better avoid collisions in comparison to
our previous obstacle representation schema. One of the largest risk factors in
competition is the potential for packets to be dropped and information gaps to
exist. In comparison to our previous method, our new obstacle avoidance system
is far less likely to cause a collision in the case of a lack of new information, and
is therefore more resistant to this particular risk factor.

5.5 Referee Interaction

Previously, we were missing a GameControllerInterface module, which would
be responsible for receiving information from the ssl-game-controller league-
wide shared software. Our lack of ability to receive referee commands from the
simulator and test different game states was highly limiting. Our new module
receives standard Google Protobuf commands via UDP and writes it to our
central information hub from which our AI reads.

With this interface implemented, we started developing responses to all free
kick, penalty, kickoff, and ball placement referee commands, which we call specific-
state functions. As the previously-delivered command matters upon reception
of a NormalStart command, we have accounted for this complexity as well to
respond appropriately.

5.6 Passing

Implementing coordinated passing was a more complex task that required the
use of multiple systems, largely depending on inter-robot communication as well
as auxiliary functions. This functionality is a top priority for us as it would allow
us to increase the pace of the game and spread the field.
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When the coordinated passing action is triggered, a robot needs to decide
which other robot is available. To find the best ally, the robot computes scores
to determine how ”open” and capable of receiving the pass each robot is. The
formula for the score is calculated based on a number of factors including the
quantity and proximity of obstacles that surround a particular robot and the
distance between these obstacles and the path of the ball. We then build a Google
Protobuf object which includes the passer’s ID, the receiver’s ID, and the passing
location where the receiver should expect the ball. As of now, the receiving
location is just the position of the receiver. However, we plan on developing a
more sophisticated system in the future that would allow for through passing.
This message is then sent to our central coordinator via RabbitMQ, which then
forwards this message to the correct receiver. Beyond messaging, we required an
auxiliary function to allow the robot to turn and face the correct direction when
passing the ball. To solve this issue, we developed a task node in our behavior
tree that would allows our robot to rotate to a specific orientation. To calculate
the angle we used the arctangent function as well as the delta x and the delta
y between starting and desired positions. See Figure 10. We then use a simple
PID-like system to adjust our angle in order to achieve the desired position and
execute a proper pass.

Fig. 10: Orientation Determination Calculation

In the future, we plan on adjusting our scoring algorithm which is used to
determine an optimal receiver. We are also looking into using a more sophisticated
system that takes into account future positions of on-field objects and can plan
and execute plays that require multiple passes in quick succession. We anticipate
this will require further work in recognizing patterns given a particular game
state and more complex calculations in determining optimal pass trajectories.
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5.7 Testing

While understanding and developing our codebase, a key problem has been
attempting to identify whether the code we write actually works and is behaving
as expected in various scenarios. When simply running our entire behavior tree,
the intricacies between the interactions of the various nodes being run as well
as the dynamic state of the game objects on the field have made it difficult to
pinpoint the effect of our code changes and discern if robot behavior improved.
Hence, one area of focus during this year’s code development has been creating a
better way to test our code.

To accomplish this, we decided to create separate test modules that would be
able to run behavior tree nodes and functionalities individually in an isolated
environment to just focus on the behavior of one node on one robot at a time.
While this method improves our ability to develop better algorithms, it is quite
slow and requires human observation of the robots. Hence, improvements in-
clude determining if a desired game state has been reached programmatically.
This would allow for tests to be run automatically as a part of our continuous
integration test suite and prevent breaks of existing functionality.

5.8 Hardware Communication

We have implemented a UDP server through which we facilitate communication of
commands from our off-field computer running our AI to our on-robot Raspberry
Pis over a Wi-Fi Local Area Network (LAN). We specifically configured the
server for receiving and interpreting Google Protobuf data.

We also established a stable UART connection between Raspberry Pis and
STM32 embedded systems. As a part of this important task, we implemented
protocols to convey post-processing data, including wheel velocities, in order to
control the robot. Processing of data is expanded upon in Section 5.9.

5.9 Processing Pipeline

We have created a new pipeline which handles the processing of commands
received from our off-field AI software, the sending of specific wheel and motor
velocities to our firmware, and all intermediary steps. Commands are received
in the form of Google Protobuf data and contain velocities in the local robot’s
perspective. Our Python software parses and interprets the command and extracts
the relevant information that is needed to perform subsequent calculations.

At this point, we utilize a newly-developed mathematical function to convert
these local velocities to velocities for individual wheels. We initially assumed a 90-
degree wheel angle configuration where the four wheels were placed equi-distantly
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around a circular base when performing these calculations. As this configuration
did not allow for a kicker and dribbler, we worked on the mathematical function
corresponding to a 30-degree wheel angle configuration, which we currently utilize.

ui =
1

ri

[
1 tan γi

] [ cosβi sinβi

− sinβi cosβi

] [
−yi 1 0
xi 0 1

]
vb

[12]

A 10-byte encoding scheme is then utilized to create a packet that is designed
for efficiency and clarity of communication to the STM32 board, according to
Figure 11 below:

Fig. 11: TritonBot Encoding Scheme

5.10 Future Goals

Future Noise Filtration Improvements The accelerations of on-field objects
have not been accounted for yet due to significant amounts of noise. The accuracy
of both object velocities and accelerations can be increased by improving noise
filtration, which we aim to do through the utilization of the Extended Kalman
Filter (EKF) algorithm. The EKF algorithm operates by updating its predictions
based on measurements and then adjusting, providing more accurate estimates
of velocities and accelerations of objects and reducing the effect of measurement
noise. This will be particularly important for non-simulation gameplay since
there will certainly be a great deal of noise to account for.
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Future TritonSoccerAI Improvements During the course of the next few
months, we expect many changes will be made to the initial designs of the
behavior trees based on the results of testing and simulated gameplay. Algorithms
to identify the optimal shot, best pass, or location to dribble towards must all be
improved to utilize expected states of the game. In particular, the adding of the
capability for a robot to make a through pass—forward pass into a space 0.5 to
2 meters in front of the targeted pass receiver—is a significant priority in order
for robots to not be limited to straight-line passes to one another. Positioning
when on offense also requires significant improvements as positioning decisions
will be made individually by each robot as opposed to a centralized source and is
integral to the availability of passing as an offensive option.

Future TritonBot Improvements Communication between TritonSoccerAI
software and TritonBot software is one-way; currently, TritonBot only receives
commands from TritonSoccerAI. In the future, we plan on adding a line of
communication back to TritonSoccerAI through which we send feedback that can
be utilized by AI. As a part of this goal, a bi-directional line of communication
will also need to be established with robot inertial measurement units (IMUs) to
receive positional and orientation data to be sent to TritonSoccerAI.

We also will need to better equip our software with the ability to be resilient
to uncertain or unideal conditions. As is critical to performance in dynamic
environments, we will need to optimize our pipeline for low-latency scenarios
that may unexpectedly arise. In conjunction to this, we may need to implement
dynamic protocol adaptation to adjust communication parameters to maximize
the flow of information given network circumstances. Further, advanced compres-
sion techniques will need to explored and utilized in lieu of our current simple
algorithm to minimize bandwidth utilization and thereby increase reliability
of communication. Lastly, we will need a robust mechanism to detect and re-
cover from communication errors and noise that may occur to keep our robots
continually functioning optimally.
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