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Abstract. This paper presents the latest improvements in the passing
strategy of TIGERs Mannheim, a Small Size League (SSL) team intend-
ing to participate in RoboCup 2025 in Brazil. This year, the ETDP will
focus on the decision-making process behind pass selection, including
pass generation, filtering, rating, and execution. We provide an in-depth
look at the algorithms and heuristics that we continuously refined in
recent years and that enable efficient and adaptive passing, ensuring
strategic pass plays in dynamic game situations.

1 Terminology

Prior to presenting the pass strategy algorithm, we defines two core concepts in
our terminology, which are important for understanding the remainder of this
paper.

1.1 A Pass

We define a pass as a kicked ball with the following attributes:

– source: The position at which the ball will be kicked. This could also be a
preceding pass target, where a robot redirects the ball.

– target: The position where the ball should be received.
– kick device: Either straight or chip.
– duration: The time the ball will need from source to target
– kick speed: The initial ball velocity at source.
– receiving speed: The ball velocity at target.
– shooting robot: The robot that will kick the ball.
– receiving robot: The robot that will receive the ball.
– receiving mode: Is the ball received and stopped at the target or immediately

redirected.
– preparation time: The time that will pass, before the ball will be kicked.
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In order to create such a pass, we require the following additional inputs:

– desired receiving ball speed: A constant speed for the receiving speed, when
creating a pass. Other conditions may reduce the effective receiving speed.
We set it to about 3m/s.

– minimum pass duration: How long should the pass take at a minimum, in-
cluding the preparation time?

The kick speed, duration and receiving speed are calculated based on a calibrated
ball model. For straight kicks, the optimal kick speed can be calculated through
the ball model [1], given the desired receiving ball speed and can afterwards be
reduced until the pass duration is below the minimum pass duration. For chip
kicks, the kick speed is first calculated for a fixed number of touch downs, like
6. It is than further reduced, until receiving speed and min pass duration are
achieved.

1.2 Moving Robots

We use the concept of moving robots in different areas of our software, like in
path planning. It estimates the area in which an SSL robot can move within
a certain time horizon based on a constant acceleration model. The estimated
area is a time-dependent circle. In last years TDP [2] we explained in detail,
how an accelerating moving robot is modeled for opponent robots. In addition
to that, we define a stopping moving robot, that comes to a stop at the end of
the considered time horizon.

The general moving robot is declared as a circle with radius rmovingRobotand
center p⃗movingRobot depending on time t that defines the area in which the robot
could potentially move within this time based on its movement limits. The circle
is calculated with equations (1)-(4).

tc =

{
0 for t < 0

t otherwise
(1)

rdyn =
|f+ (tc)− f− (tc)|

2
(2)

p⃗movingRobot =p⃗robot + [n⃗robot · (f− (tc) + rdyn)] (3)
rmovingRobot = rrobot + rdyn (4)

p⃗robot is the current robot position, n⃗robot is the normalized move direction
of the robot and rrobot = 0.09m is the robot radius. For accelerating moving
robots, f+ and f− are the 1D bang-bang trajectories[3] from position zero to
positive and negative infinity with the current robot speed and its velocity and
acceleration limits. For stopping moving robots, f+ and f− are defined as the 1D
bang-bang trajectories that maximize the distance towards positive and negative
infinity, while reaching a robot velocity of zero at time t.
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2 Pass Strategy

Our pass creation pipeline follows a structured sequence of steps, as illustrated
in Figure 1. The goal of the pipeline is to identify the best possible pass or de-
termine that no suitable option exists by generating, filtering, and evaluating
multiple candidates. Each pass is assigned a set of ratings that assess its quality
based on key factors such as the risk of interception, the likelihood of creating a
scoring opportunity, and its overall strategic impact. The process begins with the
Pass Generation, where we compute a broad set of possible passes for selected
robots based on their local game state. These passes are then refined through
an initial Pass Filtering stage, which removes unrealistic or overly risky options.
If too many passes are eliminated, new candidates are generated until a prede-
fined number of viable options is reached, with a maximum limit on retries to
maintain efficiency. Next, in Pass Rating, each remaining pass is evaluated based
on multiple criteria, including the chance to score directly, the potential for a
redirected goal, the pressure exerted on the opposing team, interceptability, and
overall passability. After this, Pass Selection chooses the single most valuable
pass, balancing strategic effectiveness with execution reliability. If a pass got
selected, then it is considered in the Action Selection phase, where the attacking
robot decides whether to execute the pass or pursue an alternative strategy. A
more detailed explanation of the Action Selection process can be found in our
TDP from 2018 [4].

The following sections will provide an in-depth look into each step of the
pipeline. Precise coordination between our robots is crucial for successful game-
play. To achieve this, we rely on Bang-Bang trajectories[3], while not mathe-
matically optimal, they are computationally efficient and allow us to precisely
synchronize timing. Additionally, their low computational cost enables us to
sample a large number of scenarios and target positions.

2.1 Pass Generation

In the pass generation phase, we look for pass targets for individual robots that
are reachable by the robot within a certain time horizon. To estimate the horizon,
we approximate a pass to the current robot. If there is currently a preceding pass
in progress, the source of the approximate pass is the location where the shooter
will intercept and redirect the ball and additionally, the remaining time of the
preceding pass is added. Otherwise, the source is the current ball location and
the horizon is equal to the approximate pass duration.

We want the robot to safely receive the ball, so the robot should come to
a stop within this time horizon. That’s why we use the stopping moving robot
from section 1.2 here to generate a circle for the execution time.

In this circle, we randomly generate target positions for potential passes. In
an early version of the Pass Generation from 2017 [5], we only took these targets
as 2D coordinates, and passed those as pass targets down the pipeline. A major
improvement in recent years was to add additional information to this pass.
The pass is fully defined from a source to a target and with all the additional
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Fig. 1: Pass creation pipeline

information described in section 1.1. This allows for precise time-based analysis
of each pass down the pipeline and also allows planning passes that originate
from another pass receiver, not only from the current ball location.

For each pass target, we pass both, a straight and a chip pass, down the
pipeline. This way, we can compare and rate both variants independently.

2.2 Pass Filtering

The pass filtering process consists of multiple filtering rules, some of which are
straightforward, while others require further explanation. The simpler filters
ensure that passes adhere to fundamental gameplay constraints, such as staying
within the field boundaries and complying with game regulations. These filters
include1:

– NotInPenArea: Prevents passes from being targeted inside any penalty
area.

– KickOffRules: Forbids passes towards the opponent half during our kick
off.

– InFieldWithMargin: Maintains a safety margin around the field bound-
aries to avoid risky passes near the edges.

1 Implementation can be found in the file PassGenerator.java
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– KeepMinDistToBall: Ensures a minimum distance between the pass tar-
get and the ball to prevent overly short or ineffective passes.

– IsNotNearGoalLine: Avoids passes that are too close to the goal line.
– IsReachable: Verifies whether the receiving robot can reach the pass target

via a direct path, without requiring path planning. This ensures that the
estimated time to reach the pass target remains accurate.

Beyond these basic constraints, more advanced filters are applied. These include:

– CanBeReceivedOutsidePenArea: Makes sure that the pass can be re-
ceived at the pass target location without entering the opponents penalty
area. We want to be able to plan and play passes very close to the oppo-
nents penalty area. This filter makes sure that the robot is physically able
to receive the ball without entering the penalty area.

– CanTargetOrientationBeReachedInTime: This filter focuses specifically
on situations involving a rolling ball. This filter eliminates passes that the
passing robot cannot safely turn to within the available time before the ball
arrives. By enforcing this constraint, it ensures that the selected pass remains
stable as the ball gets closer, preventing last-moment target switches when
there is no longer sufficient time for the robot to adjust its orientation. This
improves the reliability of pass reception and overall team coordination. The
implementation is straightforward: we calculate the time remaining until the
ball reaches the passing robot and estimate the time required for the robot
to adjust its orientation toward each pass target. This estimation is based on
an accelerated movement model with an initial velocity, combined with the
ball model to determine the remaining travel time of the ball. By compar-
ing these values, we can effectively filter out passes that the receiving robot
would be unable to align with in time.2

– KeepDirectionDuringFreekick: This filter stabilizes the chosen pass tar-
get during a free kick. This is important to avoid double touch situations.
The filter consists of a maximum angle between the selected pass from the
last frame to the current frame. The maximum angle shrinks as the shooter
is executing the free kick thus getting closer to the ball. This ensures that
the robot can still chose new pass targets as the situations changes but the
allowed change in orientation to pass to this newly considered pass targets
gets limited more and more.

– IsTargetApproachAngleAccesible: This filter ensures that the necessary
orientation and position needed to kick the ball to a given pass target is
reachable. Meaning, that the position is not blocked by an opponent robot.
This avoids movements of our robot into opponent robots. Figure 2 shows
the accessible angles (green) and the forbidden angles (red) from the view of
the approaching yellow robot. All pass targets that would require our robot
to move within the red area will be dismissed.

2 Implementation can be found in the file PassFilteringCalc.java
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Fig. 2: Ball angle accessible filter. From the perspective of the yellow robot, any
pass that would force it to enter the red marked area is discarded.

2.3 Pass Rating

We first introduced our pass rating strategy in our 2019 TDP [6]. The entire
rating system has been reworked since. While some of the terminology remains
the same, the underlying calculations and algorithms have been completely re-
designed. Before 2019, we evaluated pass effectiveness using a single rating score,
calculated by multiplying various factors such as interceptability and goal proba-
bility into a combined value. Each factor ranged from 0 to 1, with 1 representing
the best possible outcome. However, we soon realized that relying on a single
composite score made decision-making difficult. After 2019, we introduced a
more refined approach by separating the rating into two independent scores: a
goal success score and a general pass success score. The idea was to priori-
tize passes with the highest chance of leading to a goal, but if no such option was
available, the system would fall back to selecting the pass with the best overall
success rate, even if it did not create an immediate scoring opportunity.

In the last years, we refined this system even further by eliminating the mix-
ing of different ratings altogether. Instead, we now calculate multiple indepen-
dent scores for each pass, each assessing a specific characteristic. These scores are
evaluated separately, allowing for a more flexible and informed decision-making
process3. The key rating factors we now consider are:

– Passability: Some passes are valid, but not very reasonable. We consider
two conditions. First, if the kick speed is too low (like < 1m

s ), we consider it
unreasonable, as our robots have difficulties kicking a ball slower than that.
Second, we prefer a certain minimum receiving speed for a reasonable pass,
like < 2m

s , which is lower than the desired receiving speed we use during
pass generation. Below that, we reduce the score linearly to zero. The idea is
to allow slow passes in certain situations, but avoid them if there are better
alternatives.

– Pressure: This score is designed to increase pressure on the opponent’s goal
by advancing the ball into dangerous positions. In general, the score improves

3 Implementation can be found in the file PassRatingCalc.java
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as the pass target moves closer to the opponent’s goal and decreases for
passes played backward towards our own goal. Figure 3 visualizes the score
for different positions of the ball. The ball and target positions are the only
relevant variables for this score.

– Interception: This scores how well the pass avoids being intercepted by the
opponent. This is explained in detail in section 3.1.

– Goal kick: Chance to score a goal from this position after receiving the ball.
The rating algorithm relies on the same methods used in the interception
rating. After all, a shot on the goal is good, when it cannot be intercepted
by opponent robots.

– Redirect goal kick: This score estimates the likelihood of scoring a goal
by redirecting the ball into the opponent’s goal. It is calculated using the
Goal Kick Rater algorithm. We calculate the goal kick score from both the
pass origin and the pass target location. First we calculate a base score,
the score reflects the improvement in goal probability from the origin to
the target, an improvement of 50% is assigned the maximum score of 1,
while no improvement results in a score of 0, with linear scaling applied to
all intermediate values. Additionally, this base score is adjusted by a factor
based on the redirect angle. The factor is 1 for redirect angles below 50° and
0 for angles above 70°, with a linear transition between these two thresholds.
This ensures that more favorable redirect angles receive a higher rating, while
difficult or unrealistic redirects are penalized accordingly.

Fig. 3: Pressure score seen from the yellow teams perspective for three different
ball locations.
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2.4 Pass Selection

The task of pass selection is to identify the single best pass from all generated
candidates. The algorithm4 is structured into four distinct phases, with execution
beginning at phase one. Each subsequent phase is only considered if the previous
phase has filtered out all potential passes. As a result, phase one has the highest
priority—if any passes remain after this phase, the later phases are skipped
entirely. Each phase begins with a list of all available rated passes and applies
two filtering stages, except for phase four, which consists of a single filtering
stage. If any passes remain after a given phase, then the pass with the highest
INTERCEPT score will be selected. Figure 4 illustrates this concept.

– Phase 1 - Redirect: The goal of this phase is to identify the best available
pass that can be directly redirected into the opponent’s goal. The first fil-
tering stage selects passes with a reasonably high redirect score, good pass-
ability, and an acceptable interceptability score. Next, the highest REDI-
RECT_GOAL_KICK score among the remaining passes is determined. In
the second filtering stage, only passes with a REDIRECT_GOAL_KICK
score close to the highest value are retained, while all others are discarded.
This process allows a pass with a slightly lower REDIRECT_GOAL_KICK
score than the best available option to be selected if it has a significantly
better INTERCEPT score. In most cases, this results in a better overall
decision. This phase allows passes with a high risk of interception, as long
as the potential reward justifies the risk. Since these passes offer a direct
opportunity for a successful redirect toward the opponent’s goal, taking a
calculated risk can be advantageous.

– Phase 2 - Goal kick: The goal of this phase is to identify the best avail-
able pass that can be received and then followed by into a direct shot on the
opponent’s goal. The first filtering stage is similar to that of phase one but
with a different focus. This time, the filtering prioritizes passes with a high
GOAL_KICK score while also ensuring a good INTERCEPT score, mean-
ing that passes with a lower risk of interception are preferred. The second
filtering stage is the same as in phase one, just this time the GOAL_KICK
score is used instead of the REDIRECT_GOAL_KICK score.

– Phase 3 - Pressure: The goal of this phase is to select passes that have a
high chance of success while also increasing pressure on the opponent’s goal.

– Phase 4 - Last Resort: This is the fallback phase, accepting even sub
optimal passes as long as they fulfill at least one of the three key objectives
to some extent.

The prioritization of phases and the varying INTERCEPT filtering thresholds
ensure continuous pressure on the opponent’s goal. Passes with high potential
rewards tolerate a greater risk of interception, whereas other passes require a
stronger INTERCEPT score. The structure of this algorithm is highly adaptable,
as no scores are mixed together, and each phase and filter serves a distinct
purpose.
4 Implementation can be found in the file PassSelectionCalc.java
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Fig. 4: Pass selection flow.

3 Pass Interception

The pass interception rating is the most important and most complex rating
of the overall pass rating. It determines how likely a pass is intercepted by an
opponent robot. We found that it is important that there is a smooth transition
from best to worst score. Due to the fast changing nature of the SSL, passes
would otherwise toggle between good and bad often and a stable and reliable
pass execution is more difficult.

3.1 Pass Interception Rating

The base implementation5 makes use of the accelerating and stopping moving
robots described in section 1.2. The principle idea is as follows. For every oppo-
nent robot, a slow stopping moving robot and a fast accelerating moving robot
are considered. The slow one uses low movement limits, the fast one is using the
actual estimated movement limits of the opponents. Each moving robot defines
a circle depending on time, in which the robot could potentially move. With
the fast moving robot, we get an upper limit for the final score, with the slow
moving robot, we get a lower limit. A position inside the slow circle is rated with
the worst possible score, a position outside the fast circle is rated with the best
5 Implementation can be found in the file PassInterceptionMovingRobotRater.java
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possible score. Equations 5 to 9 and figure 5 show how the score is calculated
between those two circles.

Pcenter =
Pslow + Pfast

2
(5)

dpos = |Pcenter − Pt| (6)
dbase = dpos − rslow (7)

drange = rfast − rslow (8)

s =
dbase
drange

(9)

t is the time at which the check is performed, Pslow, Pfast, rslow and rfast are
the centers and radiuses of the moving robot circles at time t, Ptis the position
on the pass travel line at time t.

Fig. 5: Calculation of the pass interception rating for a pass from Porigin to
Ptarget for a single opponent robot at Pop.

Now, to get an overall score for the pass, we have to find the minimum score
on the pass travel line over all robots, by minimizing the score over time using an
optimization algorithm. We do not combine the scores between multiple robots,
so the score is the same, regardless of how many robots can intercept the pass.
Only the most critical one is taken into account.

Figure 6 visualizes how the resulting interception score is distribute on the
field, without taking the receiving robot into account. An exemplary pass is
shown together with the moving robot circles at two different time steps for
blue robot 2. At the first time step, the ball (P1) is still clearly outside of both
moving robot circles. At the second time step, P2is about in the middle between
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the circles, outside the slow moving robot circle, but inside the fast moving robot
circle. This results in a score of about 0.5 and it is about the most critical time
step, so the overall score is about the same at Ptarget.

In practice, the timing of the receiver is also taken into account. The minimum
pass duration is calculated as the time the receiver needs to the pass target
plus a fixed preparation time offset. As described in section 2.1, the pass speed
is reduced to fulfill the minimum pass duration. A slower pass has significant
impact on the score, as opponents have more time to intercept the pass. In figure
6, the range in which yellow robot 1 is able to receive the pass is depicted with
a dotted line. The score outside for this specific robot would be zero/red.

The pass interception score heat map only shows the score for a straight
pass. The same is done for chipped passes and the overall best score is taken.
However, chipped passes get an extra penalty of 0.1 on the final score, as they
are less precise and reliable.

Fig. 6: Pass interception heat map showing the interception score for a straight
pass, from the ball to all possible target positions on the field. All passes are
planned independently of the receiver and therefore without a min pass duration.
Green is best and red is worst. The slow and fast moving robot circles are drawn
for two time steps exemplarily for blue robot 2 on a pass from Poriginto Ptarget.
At these time steps, the ball would be at P1and P2 respectively and the referenced
circles would be the slow and fast moving robot circles for the same time. The
grey dotted line denotes the area in which the yellow robot 1 would be able to
receive a pass.
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3.2 Tracking Pass Success Ratio

An essential part of improving an already well-functioning implementation is
understanding the impact of each modification. To achieve this, we implemented
a pass tracking system that observes all passes played during a game and records
key data for analysis. This data includes the pass origin and target, whether the
receiving robot reached the pass line on time, and whether it successfully gained
control of the ball.

However, tracking the success of executed passes presents several challenges.
Since our robots can update their decisions every frame and select a new pass
target dynamically, it is not always clear which planned pass was actually ex-
ecuted. The robot may adjust its kick mode or speed just milliseconds before
striking the ball, and due to the inherent delay between reality and our AI, the
final decision in the last few frames before execution is often ambiguous.

To address this, we maintain a buffer of recently planned passes6. When a kick
is detected, we attempt to match the measured ball trajectory with the predicted
trajectories from our stored pass plans. This process is particularly difficult for
chip kicks, as the initial movement direction of the ball can be highly unstable
in the first few frames after the kick. A pass is considered successful only if it
reaches the intended receiving robot within the expected time frame and at the
planned target location.

3.3 Dynamic Pass Interception Scoring

We implement two methods for dynamically adapting our passing behavior based
on opponent tendencies. This adaptation is important because our INTERCEPT
score rating relies on various assumptions about how opponent robots react to
passes. Some teams may intercept rolling balls aggressively, while others might
rarely attempt to block passes. Additionally, different opponent roles influence
interception behavior, a dedicated penalty area defender may ignore rolling balls,
whereas a midfield attacker is more likely to challenge them.

The first method of adaptation involves tracking our overall pass success
ratio, as discussed in the previous section. We use this success ratio to make
subtle adjustments to our interception rating method. Our goal is to maintain
a target success rate of 70%. If our recorded pass success rate drops below this
threshold, we adjust our INTERCEPT score evaluation7 to be more pessimistic,
encouraging safer passes. Conversely, if our pass success rate exceeds 70%, we
allow for more aggressive and riskier passes to maximize offensive pressure.

In the previous section, we mentioned that we also track the origin and target
of each pass. To analyze this data effectively, we divide the field into different
zones and monitor which zones are most commonly connected by passes, along
with their respective success rates. This provides us with a rough estimation of

6 Implementation can be found in the file OngoingPassCalc.java
7 Implementation can be found in the file DynamicPassInterceptionMovingRobo-

tRater.java
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opponent behavior based on their positioning on the field, allowing us to infer
how different roles influence interception tendencies. The adaptation mechanism
remains the same as before, dynamically adjusting the INTERCEPT score by
slightly boosting or devaluing it. However, instead of applying a global adjust-
ment based on overall pass success, this method refines the evaluation based on
historical success rates of passes between specific zones.

Publication

Our team publishes all their resources, including software, electronics/schemat-
ics and mechanical drawings, after each RoboCup. They can be found on our
website8. The website also contains several publications with reference to the
RoboCup, though some are only available in German.
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