Delft Mercurians Team Description Paper
RoboCup 2025

The Delft Mercurians

Delft University of Technology
Molengraaffsingel 29, 2629 JD Delft, Netherlands
contact@delftmercurians.nl
https://delftmercurians.nl/

Abstract. This paper goes over the progress the Delft Mercurians team
has made in the past year in terms of robot design and development, to
compete in RoboCup Small Sized League division B. The paper presents
the hardware, embedded-electrical, and software aspects of the robot as
well as the research done into smart strategy-making. The future plan
for the team is also described.

1 Introduction

Delft Mercurians is a multidisciplinary RoboCup Small Size League team based
in Delft, the Netherlands, which debuted in Robocup 2024 and now aims to
participate in Robocup 2025 in division B of the Small Size League [1] [2]. The
team was founded in September 2022 by members of the Robotics Students
Association (RSA) and is made up of robotics enthusiasts and students of the
Technical University of Delft. Currently, the team consists of thirty part time
members divided into four departments: Hardware, Embectricaﬂ Software and
Magicﬂ This paper will outline the integral components that each department
has worked on, with an emphasis on describing their innovations.

! Embectrical is a concatenation of the words embedded and electrical. This term was
adopted from the Project MARCH Dream Team based in Delft.

2 The magic department focuses on applying machine-learning to perform smart and
adaptive control.


https://delftmercurians.nl/

2 The Delft Mercurians

2 Hardware

2.1 Wheels

The previous design of the wheels were found to be hard to maintain during the
competition due to the difficulty with disassembling the wheel and replacing the
sub-wheels.

The old wheel design that is suitable for commercial locking assembly for a
4mm shaft would cost a minimum of 1500 euros. Thus, the wheel and sub-wheel
attachment was redesigned as seen in Figure

Fig. 1: Wheel Assembly

Figure [I] illustrates the whole wheel contains 6 sub-sections, with each 4 sub-
wheels. This design allows for the removal of portions of sub-wheels faster with-
out disassembling the whole wheel. 6 sub-sections makes it so that there are not
too many loose parts to assemble, and less good subwheels wasted when a sec-
tion needs to be replaced. As needed, the sub-sections are connected each using
a single nut and bolt, with the whole wheel being connected to the shaft using
a 3D-printed locking assembly.

The locking assembly illustrated in figure [2al grabs the shaft using two O-rings,
which are squished using the movement of the angled surfaces in the assembly
by the force of the bolt. Worded differently, the larger of the two parts moves to
the screw plate and pushes the two semi-cylindrical parts into the shaft.

The 6 sub-sections of the wheels, as seen in figure are made of two identical
parts each, reducing the assembly and repair complexity. Each sub-section has
four independent sub-wheels that are connected to the part in figure [2b] using 2
mm rods.



Delft Mercurians Team Description Paper RoboCup 2025 3

(a) Locking Assembly nuts and bolts (b) Locking Assembly centerpiece

Fig. 2: Locking Assembly

The wheels were mounted to the robot to validate the mechanical boundaries as
defined in the competition rules remain respected. They still need to be manu-
factured and tested, to see how well they drive.

2.2 Chipper and Dribbler Assembly

For this year’s competition, a full redesign of the dribbler assembly was done, to
both improve the overall dribbling capabilities and accommodate the addition
of the chipper. The dribbler and chipper assembly can be seen in

This new design features a single connection point between the moving section
of the dribbler assembly and the mounts on the base-plate. This design choice
establishes a well-defined rotation point which allows the dribbler to rotate freely

around that pivot point. This is visualized in

This design intentionally constrains the dribbler assembly to a single degree of
freedom. This means any energy absorbed during impacts or while dribbling is
effectively converted to motion around the pivot, and it was decided to make
use of a spring to regular the motion and provide the stiffness in this degree
of freedom. Said spring is a compliant 3D printed spring. This can be seen in
[Figure 4 where the deformed and undeformed shape of this spring is shown. This
was inspired by the UBC Thunderbots 2023 design [3]. The implementation was
significantly altered to create a more robust and less complex system.

In the conventional approach, the process of getting to the perfect stiffness in-
volves specifying and ordering custom-fabricated springs. This is a process that



4 The Delft Mercurians

(a) An isometric view of the current dribbler (b) A side view of the current dribbler design
design indicating the degree of freedom

Fig. 3: February 2025 dribbler design

a) In tension b) In compression
(a) p

Fig. 4: Compliant spring deflection example

is both expensive and time-consuming in the case of almost all suppliers. This
alone hinders rapid, affordable and feasible prototyping and iterative testing.
In contrast by making use of the compliant 3D printed spring it is possible to
obtain any desired stiffness in a short time.

When a new stiffness is desired, the compliant/deformable spring parameters
such as the length and width of the compliant/deformable parts of the spring
along with its thickness are adjusted. This is then followed by a preliminary
finite element analysis (FEM) to validate the design. Eventually, the design is
printed which takes less than 10 minutes. This allows for rapid prototyping to
find the best stiffness and additionally allows the team to customize the stiffness
and rebound of the dribbler to different performance requirements in case of
different settings. Additionally, the use of 3D printing allows a wide selection of



Delft Mercurians Team Description Paper RoboCup 2025 5

materials to further tune the springs rigidity and durability. One of the main
contenders for alternate materials at the moment is TPU, as this is known for
its elasticity. This new design is being manufactured and tested for competition
viability.

2.3 Polycarbonate Baseplate

The baseplate used in the 2024 and 2025 robots is double layered and made
of polycarbonate, a novelty within the competition. This choice was made to
accommodate for the required gap in the baseplate to allow the DF451.024048
motors to drive the wheels directly. The common solution of a single-layered
metal baseplate could not be accommodated, due to the lack of CNC capabilities
within the team. The double-layered baseplate, which can be found in figure
allowed us to laser cut both 2 mm thick layers separately, with the top layer
having additional cuts for the motors, the batteries, the fan and the case, as can
be seen in figure

The original design used wood for the baseplate layers. However, the structural
integrity and reliability was not sufficient. The most promising alternative found
was polycarbonate, which held up extremely well during play tests and the 2024
competition in Eindhoven.

The 2 plates are held together by the screws on the bottom and the assemblies
connected to the baseplate on the top, basically sandwiching the plates together.
Thus, if the robot is not assembled, the plates are loose. This is beneficial, since
the layers can be replaced separately in case of design updates, or damages. There
has been nearly zero damage done on the baseplates during the competition, they
held be exceptionally well and can be reused for this year’s competition.

The polycarbonate does have some downsides. Mainly, the density of the poly-
carbonate used is 1.21g/em?, which leads to the center of gravity of the robot

being higher compared to most teams that use a metal base plate. The goal is
to compensate for this through the use of the fan.

3 Embedded & Electrical

3.1 New motor drivers

The team is still using the same B-G431B-ESC1 motor drivers as last year,
however the carrier boards have been redesigned.



6 The Delft Mercurians

(a) Bottom layer of the base (b) Top layer of the baseplate, (c) Baseplate layers combined
plate with additional cut-outs for

the battery packs, wheel mo-

tors, fan and the case

Fig. 5: Double-layered polycarbonate baseplate

The previous robot used PCle connectors to hold the motor drivers, to allow easy
replacement of the motor drivers. However, these connectors were not suitable
for a moving robot, the motor drivers would frequently disconnect when the
robot accelerated. This issue was mitigated at the competition using hot glue,
but it was clear that the carrier boards should be redesigned with a suitable
connector.

(a) Old motor drivers, on the power boards (b) New motor drivers, on the test board

Fig. 6: Old and new motor driver designs

The new boards use standard pin headers and are mounted horizontally instead
of vertically, increasing the stability of the motor drivers and also allowing for
better airflow and cooling.

An issue was encountered where the motor drivers would get excessively hot
even when not using the motors, which was likely caused by the on-board 5V
regulator. This issue was solved by removing the regulator on each of the boards
(circled in red in Figure7 and supplying 5V externally from the power boards.



Delft Mercurians Team Description Paper RoboCup 2025 7

3.2 Power boards

The so-called power boards contain most of the high power distribution circuitry,
and carry the motor driver boards. The motor driver boards are separate, so that
they can be swapped out in case of failure.

The power boards also allow for a unique two-battery strategy. To run at full
power, the robots need two 3S battery packs to be connected in series. However,
the robots can still run off of one 3S battery, enabling hot swapping of the
batteries without power interruption. This decreases the time needed to swap
the batteries during a match, by removing the need to wait for the robot to start
up. It may be even more useful if slow-to-boot subsystems, such as a Raspberry
Pi, are added in the future. shows a basic circuit for implementing
the dual battery setup. The notable parts are the two buttons (A and B) for
switching on the circuit initially, as well as the two optocouplers, which allow a
microcontroller to keep the circuits on.

Pack A + Power Out +

Pack A Enable L } K 4
= 1
o : : On Button (A) Bypass
| n utton zi
Pack A - 3@TT)2
Pack B +
Pack B Enabte[}—:’—i} Kij
= 1
GNDT 2 3 Bypass
«| On Button (B) Z§
Pack B — sﬁ'_ﬂz Power Out —
3@y

Fig. 7: Dual Pack Circuit (Simplified)

For coordination, there is a small microcontroller, whose primary function is to
latch the battery pack switching circuitry on. It also monitors the pack voltages
and switches the downforce fan on/off. In theory, the battery pack voltages can
be balanced by selectively shutting off the lower voltage battery pack, however
this still needs to be implemented.

Finally, the team is experimenting with a strategy to reprogram the motor drivers
in place. Using multiplexers, the UART and SWD lines to the motor drivers can
individually be addressed, allowing reprogramming and debugging of all motor
drivers through a single USB connection. Due to bandwidth limitations, the
SWD connection is not stable, however this will be addressed in future revisions
of the PCBs.



8 The Delft Mercurians

4 Software

Last year the team developed their own open-source software platform, Dies El,
which provides a framework for AI development. It consists of a core written
in Rust, which includes a physics simulator, networking, vision data processing,
game state management, and development tools. Strategies, the high-level logic
that governs the player’s behaviors, are also written in Rust and are run in a
separate process, allowing for hot reloading and easy debugging.

Following the experience from last year’s competition, it was recognized that
large scale improvements were needed in the team’s software architecture. The
main areas of focus were chosen to be:

— Improving low-level control
— Adopting a more structured approach to strategy design
— Improving the developer experience for common tasks

4.1 Low-level Control

Low-level control is responsible for driving individual robots to position and
heading setpoints determined by the higher-level strategy by issuing velocity
commands. There were several challenges in this aspect. Last year’s robots were
prone to overshooting position setpoints, oscillating around heading setpoints
and were generally inaccurate, especially when it came to maneuvers like passing
that required precision.

Position Control For position control, a minimum-time path (MTP) controller
was implemented, which operates in three distinct modes. For longer distances,
the controller first enters an acceleration phase, commanding maximum acceler-
ation until reaching either the maximum allowed velocity or transitioning to the
next phase. See Figure [8] for an illustration.

One issue is that this rapid acceleration can cause the wheels to slip — this is
being addressed by implementing jerk limits on the embedded controller.

The controller includes a ” carefulness” parameter that can be tuned to trade off
between aggressive and conservative behavior. When in proportional mode, the
deceleration rate is amplified compared to acceleration to account for inertia,
and this amplification increases with the carefulness parameter:

Adecel = 5(1 + kcare)aacceL

3 https://github.com/DelftMercurians/Dies



Delft Mercurians Team Description Paper RoboCup 2025 9

Position (m)

20 — \elocity
--- Max Speed
Acceleration
Cruise
Proportional
10 Stopped

Velocity (m/s)

o 2 e TAMI:KS) =0 2 *
Fig.8: The bottom plot shows the distinct control phases: acceleration (blue region)
where velocity increases linearly, a brief cruise period (green region) at maximum ve-
locity, followed by the proportional control phase (red region) for careful deceleration,
and finally the stopped state when reaching the target. The top plot shows the result-
ing smooth position trajectory reaching the 4-meter target position.

This helps prevent overshooting while still allowing for rapid approach to the
target. The revised design has significantly improved the controller’s positioning
accuracy compared to last year’s implementation.

Heading Control The heading control system employs a dual approach. The
primary system utilizes onboard PI controllers that leverage high-frequency IMU
feedback, receiving periodic absolute heading references from the central system.
As a fallback mechanism, a server-side PI controller was maintain which can
take over if the IMU fails, though this alternative exhibits lower accuracy due
to communication delays.

Time Delay Compensation A significant challenge in control accuracy is
vision system delay. This is addressed using Kalman filters for all tracking, with
their internal models compensating for time delays. The current state estimate
is given by & = Tmeas + & - 7, where 7 is the dynamically calculated time delay
based on vision system timestamps, Zmeas is the measured state, and z is the
velocity estimate.

While more advanced approaches like Model Predictive Control (MPC) were
considered, it was decided that the implementation complexity outweighs the



10 The Delft Mercurians

potential benefits. However, there is plan to experiment with MPC in future
iterations as the system matures.

4.2 Strategy Design

For the strategy layer, the team has transitioned to a behavior tree architecture
that provides a structured approach to robot decision-making and coordination.
Behavior trees allow us to compose complex behaviors from simple, reusable
components while maintaining clarity and debuggability.

The core of the team’s strategy system is built around the concept of ”situations”
- composable conditions that represent a robot’s understanding of the game state
from its perspective. These situations help answer questions like whether a robot
has a clear shot on goal, if there are teammates available for a pass, or if there
is a defensive emergency requiring attention.

The team’s implementation evaluates behavior trees on each vision frame up-
date, with nodes returning one of three states: Success, Failure, or Running. This
polling-based approach allows for reactive behavior adaptation as game condi-
tions change. For example, a node executing a passing behavior might return
Running while the pass is in progress, Success when completed, or Failure if the
passing lane becomes blocked.

Situations can be composed using logical operators to create more complex con-
ditions. For instance, a ”good scoring opportunity” might be composed from
simpler situations:

good_shot = has_ball A clear_shot_to_goal A —heavily_defended

The behavior trees consist of several types of nodes that can be composed to
create sophisticated behaviors:

— Select nodes try actions in priority order until one succeeds
— Sequence nodes execute a series of actions in order

Action nodes perform the actual robot behaviors

Guard nodes gate execution of subtrees based on situations

Active nodes in the tree can maintain state between ticks, enabling behaviors
that develop over time. For example, a passing sequence might track its progress
through multiple stages: preparation, execution, and confirmation. Each node
can also register debug visualizations, making it clear which branches of the tree
are active and why certain decisions are being made.



Delft Mercurians Team Description Paper RoboCup 2025 11

Fig.9: Example of a simplified behavior tree for an attacking role. Select nodes (white)
choose between alternative behaviors based on conditions (green), which gate the exe-
cution of actions (blue). The tree evaluates conditions in priority order, running emer-
gency responses first, then attempting to score or pass if possible, and falling back to
support positioning.

Team coordination is achieved through a combination of explicit and implicit
mechanisms. Robots can broadcast their intentions (like preparing to pass or
seeking a pass) through a shared world model, allowing for loose coordination
without tight coupling. For more structured plays, robots can explicitly coordi-
nate through a play system that defines roles and interactions, though the exact
formulation of this system is still under development.

The behavior tree framework as seen in [J] allows for composition at multiple
levels. Individual trees can be composed into larger trees, promoting code reuse.
For example, a midfielder role might combine the passing behavior from the
attacker role with additional defensive responsibilities:

midfielder = select(defend_if_emergency, pass_if_possible, maintain_formation)

The strategy system integrates closely with the visualization tools, allowing de-
velopers to see the active branches of behavior trees, the conditions being eval-
uated, and the reasoning behind robot decisions. Each situation can include
visualization elements like ranges, vectors, or text overlays that help explain the



12 The Delft Mercurians

robot’s decision-making process. This visibility is invaluable for strategy devel-
opment and debugging.

4.3 Developer Experience and Debugging Tooling

Developer experience (DX) has emerged as a critical focus for the team. As
a partially distributed group with members having limited availability due to
academic and professional commitments, reducing friction in the development
process directly impacts the team’s ability to retain contributors and maintain
continuous progress. Good DX and robust simulation capabilities enable remote
development without requiring physical access to robots or field space — a sig-
nificant advantage for the team’s distributed structure.

Rich Debugging Interface The new web-based Ul incorporates comprehen-
sive debugging tools that have dramatically improved development workflow.
The interface supports real-time visualization of robot states, planned paths,
and behavior tree decisions through an overlay system that can render geometric
primitives directly on the field view. A flexible logging system allows developers
to track and plot arbitrary values over time.

A particularly powerful feature is the built-in plotter with its custom script-
ing language. This tool enables developers to create complex visualizations and
analysis of robot behavior on the fly, without requiring code changes or system
restarts. The scripting language supports mathematical operations, filtering, and
aggregation of any logged values, making it invaluable for tuning controllers and
debugging complex behaviors.

Custom Simulation Environment While several established simulators exist
in the SSL community, the team made the strategic decision to develop their own
simulation environment. This choice was driven by several key factors:

1. Improved sim-to-real fidelity through precise modeling of specific robot char-
acteristics

2. Seamless integration with the team’s codebase, eliminating external depen-
dencies and reducing setup complexity

3. The ability to run faster than real-time, enabling rapid testing and validation
cycles

The simulator achieves up to 10x real-time speed while maintaining physics accu-
racy, allowing developers to quickly iterate on strategies and control algorithms.



Delft Mercurians Team Description Paper RoboCup 2025 13

Fig. 10: The debug interface showing real-time visualization of robot states, and paths.
The built-in plotter (right) uses a custom scripting language for flexible data analysis.

Automated Testing Framework The team is still in the early stages of devel-
oping a comprehensive automated testing framework. The framework leverages
the simulator’s faster-than-realtime capabilities to run extensive test suites that
validate both low-level controls and high-level strategies. Tests can be defined
using a declarative syntax that specifies initial conditions, expected behaviors,
and success criteria.

The combination of these tools — rich debugging interface, custom simulator,
and automated testing — has significantly improved development efficiency. Team
members can now contribute meaningfully without requiring physical access to
robots, and the time from concept to validated implementation has been dra-
matically reduced.

5 Magic

A defining feature of strategies implemented within RoboCup SSL competitions
is their basis in classical control. When talking with other teams and examining
their code, it was discovered that high-level strategies use finite state machines
(FSMs) to specify the behavior of the robots in each particular field configu-
ration. FSMs can represent strategies of arbitrary complexities, and debugging
tools are abundant. However, the FSM-based strategies are problematic in the
long term. The main issue lies in the accumulating cost of supporting large state
machines. As the number of possible states becomes substantial, the interdepen-
dence of robot behaviors makes debugging harder and discourages developers
from improving the strategy. The solution to this problem is to replace the com-
plex conditionals in state transitions with data-driven methods. An example



14 The Delft Mercurians

would be evaluating which robot should be passed to based on the self-play
history and not the set of human-defined rules.

Magic department aims to alleviate FSM issues and ultimately incorporate data-
driven decision-making into the strategy.

5.1 Simulator

One of the necessary features of implementing a successful data-driven algorithm
is the ability to self-play. In most modern supervised learning, one gets a high-
quality dataset with labeled data; in this case, such a dataset is not available.
The recordings of past games are available, but most of the games are of low
quality, and overall, the amount of data is too small to be naively useful.

Thus, the team is interested in implementing self-play. Since the team is severely
compute-limited, a simulator that runs on a GPU is required [4]. While there
are several available industry solutions [5] [6], there is not a single simulator that
would natively support 2D objects.

Since JAX [7] is preferred as the main machine learning framework, it was de-
cided to implement the simulator similarly to Brax [8]. The reason Brax is not
applicable in its raw state is the imperfect handling of multiple body systems,
leading to a quadratic compilation time. In preliminary experiments, Brax was
compiled for more than an hour to run a simple policy on 12 robots. Thus, the
frameworkw as abandoned. Instead, a solution with lower complexity, simpler
physics, and faster compilation times was implemented.

The name of the simulator is cotix [9], not yet in a production-ready state.

5.2 Algorithms

Under the assumption of an existing simulator, algorithms now have to be de-
signed. As was already mentioned, JAX [7] is preferred over alternatives, thanks
to the compute provided by Google TPU Research Grant and overall better
suitability for reinforcement learning. While very little implementation has been
done at present, the aim is to have AQC [10] implemented before the compe-
tition. Preliminary experiments with Proximal Policy Optimization [11] show
some promise, but the results are generally insufficient to be used within main
framework. The results are well aligned with the previous attempts done by [12].



Delft Mercurians Team Description Paper RoboCup 2025 15

6 Conclusion & Future Work

In the past year the team has revised every sub system from the experience in
the last year’s competition, and made great improvements in their design. The
team has also implemented some of the changes, with more working in progress.

In hardware, a new wheel design was made to be modular and easier to maintain
during the competition. A new assembly method was also designed to reduce
cost and improve ease of assembly. The new design is extremely promising but it
still has to be manufactured and tested. The overall dribbler assembly was also
redone to be more reliable and also accommodate for the chipper. It should also
comply to the competition regulation better. Lastly, a new material was used for
the baseplate, which has proved to be extremely strong and reliable, so it will be
used again for this year’s competition with an updated design to accommodate
the hardware changes.

In terms of electronics, the motor drivers were updated to solve the overheating
problem. The carrier boards were also redesigned to be much more stable and not
lose contact with the power board when the robot is running. Furthermore, the
power board is also being redesigned to support reprogramming and debugging
all the motor drivers at the same time. In addition, there were some issues with
the battery connectors in last year’s competition, so they will also be redesigned
to improve ease of use.

For software, a ton of improvements were done in framework to improve the
strategies, developer experience and speed, and overall stability of the system.
A more structured approach to strategies was established, which allows for more
complex yet comprehensible strategies to be made. Low level control was improve
greatly to improve position and heading control flexibility and accuracy, and to
compensate for time delays. Debugging, UI, and other visualization tools were
implemented to improve the overall devleoper experience to write better code
and expose issues better. Furthermore, a custom simulation environment was
implemented to test strategies and controls faster, with automated testing in
the works to speed the testing process even more. This also improves the sim-
to-real fidelity.

Finally, in the Magic department great progress was made in the lightweight
simulator to enable training reinforcement learning models. The aim for the
algorithm was also established.

The team has done a ton of improvements on all aspects of the robot, they are
positive that these improvements would bring a lot of value to how the robots
play and would bring an edge to them during the competition.



16 The Delft Mercurians

7 Acknowledgements

The team would like to thank the TU Delft Robotics Institute, Cognitive Robotics
department of Mechanical Engineering of TU Delft, as well as the FAST grant
for supporting the team’s activities in the year of 2025.

Further thanks to all the members that contributed to the team: Thomas Het-
tasch, Tim Verburg, Zhengyang Lu, Alexander Nitters, Thijs Houben, Zhengyang
Lu, Nianlei Zhang, George Sotirchos, Leila Hashemi, Irs van de Vijver, Evan
Freeman, Kevin Do Cao, Martijn Boonen, Mohammad Kian Ebrahimi, Ece
Sinanoglu, Mahdi Marroufi, Balint Magyar, Guillem Ribes Espurz, Teodor Nea-
goe, Yohan Le Gars, Renyi Yang, Ivan Lopez Broceno, Yousef El Bakri, Vilo-
hit Kaza, Roman Knyazhitskiy, Martino Manaresi, Sasan Salmani Pour Avval,
Junxiang Qi, Joona Rengers, Jasper Brink, Sandro Karhula, Giannis Pantidis.

References

1. “Delft Mercurians TDP 2024,” [Online; accessed 5. Feb. 2025]. [Online]. Available:
https://delftmercurians.nl/documents/TDP_2024.pdf

2. “Delft Mercurians,” [Online; accessed 12. Feb. 2024]. [Online]. Available:
https://delftmercurians.nl/about/

3. A. Senthilkumarb, A. Sidhuf, A. Balamuralia, D. Sturnc, D. A. D. Tof, F. Muh-
stagb, F. Cremad, H. Bryantb, H. Rovnerg, J. Lewb, K. Wakabad, N. Zareiana,
O. Levyf, R. Khanf, R. Caod, R. Nedjabatb, T. Kongb, S. Ajmald, S. Lye, and
Y. Zhou, “Ubc thunderbots 2023 team description paper.”

4. J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin, and
D. Fox, “Gpu-accelerated robotic simulation for distributed reinforcement
learning,” in Conference on Robot Learning (CoRL), 2018. [Online]. Available:
https://arxiv.org/abs/1810.05762

5. NVIDIA, “Isaac sim: Nvidia’s robotics simulation platform,” |https:
/ /developer.nvidia.com /isaac-sim, 2023, accessed: 2025-02-09.

6. E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based
control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2012, pp. 5026-5033.

7. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,
G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang,
“JAX: composable transformations of Python+NumPy programs,” 2018. [Online].
Available: http://github.com/jax-ml/jax

8. E. Frey, A. Raichuk, S. Girgin, O. Bachem, S. Bohez, O. Pietquin, M. Geist, and
D. Duckworth, “Brax: A differentiable physics engine for large scale rigid body
simulation,” arXiv preprint arXiv:2106.13281, 2021.

9. R. Knyazhitskiy, “cotix: continuous-time differentiable simulator in jax,” 2025.
[Online]. Available: https://github.com/DelftMercurians/cotix

10. T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker, “AQOc: Alpha zero in
continuous action space,” 2018.


https://delftmercurians.nl/documents/TDP_2024.pdf
https://delftmercurians.nl/about/
https://arxiv.org/abs/1810.05762
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim
http://github.com/jax-ml/jax
https://github.com/DelftMercurians/cotix

Delft Mercurians Team Description Paper RoboCup 2025 17

11. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

12. F. B. Martins, M. G. Machado, H. F. Bassani, P. H. M. Braga, and E. S. Barros,
“rsoccer: A framework for studying reinforcement learning in small and very small
size robot soccer,” 2021. [Online]. Available: https://arxiv.org/abs/2106.12895


https://arxiv.org/abs/2106.12895

	Delft Mercurians Team Description Paper RoboCup 2025

