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Abstract. This paper describes the improvements implemented by the
Georgia Institute of Technology’s RoboCup SSL team, RoboJackets, in
preparation to compete in RoboCup 2025 in Salvador, Brazil. This year,
our main focus was on improving our motion driving system by designing
and producing new motor and control boards. Mechanical modifications
were limited this year and mainly centered around a shell and color plate
redesign. Firmware updates built on progress from last year’s rewrite to
improve debugging and the motion update rate. Software development
this year was centered around complying with rules and improving basic
skills such as ball collection as well as kick/path planning. As always, all
of our designs and code are open-sourced. See the RoboCup SSL website
for links, or search for “RoboCup” on our GitHub pagel

1 Mechanical

1.1 Shell Redesign

This year, mechanical efforts for our fleet of robots were limited due to lack of
budget and manpower. As such, we worked on continuing and finishing mechan-
ical projects that we started last year and to maintain our current electrical
stack. Our main gripe with the mechanical design during last year’s competition
was the state of our shells and color plates. Since, this is a cost effective and
relatively simple change, this was main point of focus for the mechanical team.
Outside of this, we worked on ensuring that our robots had reliable hardware
for all other subsystems.

Our main mechanical improvement this year was redesigning our shell and
color plates. At competition last year, we struggled with our shells as putting
them on and off the robots would interfere with wires and sometimes even snap
them. Moreover, whenever we needed to access our electrical boards or view
the status of our Teensy micro controller, we would need to remove the shell
which was far from ideal. Lastly, our color plates were poorly fixed to the shells
resulting in a difficult process when we needed to switch team colors. These were
similar problems to the ones we faced in Bordeaux during RoboCup 2023 and
we attempted to solve these issues with a magnet based solution discussed in
our TDP from last year and shown in Figure 1 [1]. While this solution seemed
elegant at the time, we failed to realize that the presence of magnets near our
radio resulted in communication problems.
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Fig. 1: Shell & Color Plate Design 2024

As such, we decided to once again redesign our shells for our robots.

In our new shell design, we were able to create a shell that is screwed to the
bottom half of the robot as shown in Figure 2. This was done as the changes
that have to be made in a competition are more frequently occurring in the top
half of our robot where the electrical boards are. By fixing the bottom half of
the shell to the robot, we do not have to worry about detaching and reattaching
the bottom part of the shell which usually catches on our break beam wires,
causing them to snap. The top half of our shell, depicted in Figure 3, slides into
the holes that are present in the bottom half. This allows for secure attachment
of the shell while also allowing for easy removal. The top half of the upper shell
also has an open top, allowing us to easily debug our Teensy microcontroller.
Previously our shell had a closed top, requiring the entire shell to be removed to
view the microcontroller. The color plate is attached to the top of the shell via
a hinge, enabling us to change our team color from blue to yellow when needed
with much more ease than in previous years.
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Fig. 2: Bottom half of shell affixed to robot

Fig. 3: Top half of shell which is removable
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Table 1: 2025 Robot Specification

Dimension @180mm x 146mm

Total Weight 2.59 kg

Drive Motors Maxon EC 45 Flat (651610)
Encoders Maxon Encoder (673029)
Wheel Diameter a53mm

Dribbler Motor Maxon EC 16 (405812)

Dribbler Bar Diameter 15 mm
Dribbler Damping Material|Poron Microcellular Urethane

Kicker Charge 4000 F @ 250V
Kick Speed 6m/s (max speed)
Chip Distance approx. 3m

2 Electrical

This year’s electrical changes were primarily focused on the design of Motorboard
v1.0 and Control Board v4.0 with the objective of improving our existing motor
driving system. The following table summarizes the changes on the electrical
stack:

Table 2: Electrical stack changes from 2024 to 2025

[Part [2024 [2025

Radio nRF241L01 nRF241.01

Base Station RaspPi 4 + nRF24 RaspPi 4 + nRF24
MCU Teensy 4.1 Teensy 4.1

Control Board v3.4 v4.0

Motorboard N/A v1.0

Kicker Board v3.3 v3.3

Battery 18.5V 90C 1600 mAh 18.5V 90C 1600 mAh

2.1 Background

During the 2024 competition in Eindhoven, Netherlands our team was facing
one of the worst hardware constraints until date. Our motor driving system
was experiencing an unprecedented delay, resulting in undrivable robots. After
multiple attempts through firmware modifications and hot-fixes we concluded
that the underlying hardware implementation was at fault. Our previous system
relied on a Xilinx Spartan 3 FPGA for the control logic. Even after modifying
the existing RTL by simplifying the control logic we weren’t able to resolve the
delay problem. The proposed solution was to implement an entirely new motor
driving system based on STM’s STSPINFOA IC as our controller of choice. This
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new motor driving system was inspired by the corresponding STM development
board as well as the A-Team’s motor driving system described in their 2023 TDP
26

In addition, the team has decided to move towards a more modularized elec-
trical stack, where each system lies in an independent board. This approach
aims to improve debugging capabilities and also makes generational changes less
costly and independent of other parts of the electrical system. The motivation
behind this change arises from the design of last year’s Control v3.4, where we
only needed to replace the microcontroller and radio connectors, but as a result
of a monolithic control board, we ended also including our old motor driving sys-
tem and power regulation system, which drastically increased the cost of what
should have been a minor hardware change.

2.2 Motorboard v1.0

Motorboard is the newest integration to our electrical stack. Although it is a new
board, most of it’s functionality could be found in our previous control board.
Motorboard’s functionality revolves around power regulation and motor driving.
In the board we can find our DC-DC converters, high and low power rails, power
distribution connectors, and our motor driving system. The following diagram
contains an overview of motorboard’s functionality.
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Fig. 4: Motorboard v1.0 high level functional diagram

Voltage Regulation & Power Distribution Our robot operates using three
different voltage levels (18.5V, 5V, 3.3V) which we have categorized into a High
Power Rail (18.5V) and Low Power Rails (5V and 3.3V). The HPR is protected
using a fuse and a protection IC (VN5E006ASPTR-E) [4]. This protected power
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rail is then fed directly into the motor driver system to power the motors and
it is also passed through an XT-30 connector into the kicker board to power
our kicker system. It is also fed into the 5V and 3.3V monolithic regulators
(MPM3620GQV-P) which drive the LPRs [5]. These LPRs are then used to
power most logic components in this board and other boards including the MCU,
radio, OLED display, and other discrete components such as LEDs.

Motor Driving System Following from the background section, our team
designed a new motor driver system revolving around the STSPINFOA (SPIN
for short). Being STM’s integrated solution, the SPIN chip is equipped with
an integrated driver capable of driving 6 N-Channel MOSTFETSs under two
different configurations: 6 step and FOC. The SPIN also provides three high-
speed timers which are used for both configurations. In our case we are using
the 6 step algorithm, therefore, the motor’s Hall Sensors are connected to the
SPIN’s high-speed timer to allow for real-time motor phase/position detection.
This information is directly used to transition between the 6 different states.
The implementation of the 6 step algorithm is still a work in progress which can
be found on our firmware GitHub repository @ Our Maxon motors are also
equipped with encoders which are driven directly with an RS-422 differential
pair transmitter. We have included the appropriate receiver (SN75157) on Motor
Board which delivers a clean encoder signal into the SPIN. The following figure
shows a top view of Motorboard’s finalized design. Each motor block has been
labeled appropriately.
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Fig.5: Top View of Motorboard v1.0
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2.3 Control Board v4.0

As explained in the background section, Control Board v3.5 has been divided into
Motorboard v1.0 and Control Board v4.0. Therefore, Control Board no longer
hosts the motor driving system and the voltage regulation system, instead those
has been moved to Motorboard, leaving Control Board v4.0 with our Radio con-
nector, MCU connector, IMU connector, and a new OLED display for improved
debugging and real-time status updates. In other words, Control Board has been
simplified into an interface board intended to connect together all the remain-
ing systems in the robot. The following figure shows a top view of our finalized
Control Board v4.0:

Fig.6: Top View of Control Board v4.0

3 Firmware

3.1 Robot Testing

At the 2024 RoboCup competition, time constraints led the team to connect the
new microcontroller (a Teensy 4.1) to the existing robot control board via a sys-
tem of wires and breadboards . Although the setup was functional, peripheral
connections between the Teensy and control board often became disconnected
leaving the team to manually debug electrical connections. At competition, the
team wrote a series of tests to diagnose what peripheral was disconnected to
speed up the electrical connection testing. Each test, however, needed to be man-
ually programmed onto the Teensy causing the testing procedure to be lengthy
and placing unneeded strain on the Teensy’s flash storage. In an attempt to
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reconcile these limitations, the updated Teensy firmware has a series of testing
modes for “unit testing” the various connections and peripherals of the Teensy.
In general, each testing mode can be enabled via a flag sent from the base com-
puter dictating a specific testing mode. After receiving the test flag, the robot
completes a set of pre-defined tasks returning an update status before finally
returning a full task status and switching back to normal operations.

Base Station Robot 0

Begin Radio Receive Benchma:king‘ Enter Radio
»

Radic Receive Benchmarking BEegun receive Benchmark
g~ e m el Mode

Repeated
for 5 Contral Message

I Resume Normal
Operations

Fig. 7: Robot 0 benchmarking its radio’s receive functionalities.

In figure 7, robot 0 receives a control message from the base station indi-
cating it should benchmark it’s onboard radio. Robot 0 then switches to radio
benchmarking mode where it listens to packets for 5 seconds before reporting the
total number of received packets to the base station. Finally, Robot 0 switches
back to normal operations.

3.2 Motion Update Delta

In the context of firmware, our team has defined our motion update latency as
the time it takes our motion control loop to take measures from the IMU and
encoders, calculate an updated command, relay the command to the motion
control system, and relay kicker commands to the kicker. Ideally, by minimizing
this motion update latency the robot should be able to more smoothly perform
minor corrections to its current velocity.
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For scheduling firmware tasks, the team has opted to utilize the RTIC (Real-
Time Interrupt-driven Concurrency framework) RTOS [8]. In RTIC, tasks can
be scheduled as software and hardware tasks. Software tasks must be dispatched
by an executing task and hardware tasks are dispatched by some interrupt (i.e.
a GPIO trigger or a timer elapsing). Previously, the motion update loop was
scheduled using a loop where a motion update loop spawned a delay software task
using the Teensy’s systick timer as a monotonic timer. Using the systick timer to
effectively schedule the motion update loop was successful at achieving motion
update deltas of roughly 2ms. To decrease this delta between subsequent motion
update loops, a periodic interrupt timer on the Teensy was devoted to scheduling
the motion update loop. This allows the motion update loop to be scheduled via
a high priority hardware task. By switching to using the periodic interrupt timer
to schedule the motion update loop, the team was able to decrease the motion
update delta to, on average, 0.5ms reliably.

4 Software

4.1 Rules Compliance

We made significant improvements to our rules compliance logic heading into
the Eindhoven competition, including handling game states such as kickoff and
free kick [9]. However, there were still lingering issues that resulted in penalties
on the field.

First, our robots did not respect an opponent’s ball placement. To fix this,
we added the so-called “stadium shape” to our geometry package. The shape is
added as an obstacle to surround the ball and kicking robot during ball place-
ment. When added as an obstacle, the robots avoid this space, adhering to the
rules. The stadium shape is a set of our existing circle and rectangle shapes. The
existing rectangle shape could not be represented at an angle, so this was an
additional improvement.

Second, our planner that escapes obstacles did not avoid hitting the ball.
At competition, this typically manifested itself during the STOP state, when
robots would hit the ball when trying to exit the ball’s obstacle zone. Rather
than creating a “simple” path, which could not handle internal obstacles (i.e.,
the ball), we now use our standard path generation planner, adding the ball as
an obstacle.

4.2 Ball Collection

One of the most fundamental tasks for our robots is to retrieve the ball, such
as to allow the offense to obtain possession and pass. In Eindhoven, this was
entirely done with our traditional path planners, which was completed based on
conditions from vision (i.e., vision’s “idea” of the robot’s position being close to
the target). Although this worked a majority of the time in Eindhoven, where
the vision was very well calibrated, there were still instances of our robots not
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actually having possession when software believes that it does. At our home
field, where our vision system is less robust, the issue is significantly worse. We
altered our revamped collect planner to take into account “ball sense”, which
firmware sends when the break beam detects the ball inside the robot’s dribbler.
Now, our strategy is more consistent.

4.3 Kick Planning

At the Eindhoven competition, our kicking was handled by the pivot_kick plan-
ner. This planner worked using two key states, approach, pivot, and kick. During
approach, the robot towards the ball. Then it would pivot, driving in an arc
around the ball at a radius of 0.5m, ultimately facing the target. This has two
issues. First, driving in the arc is very slow, allowing opposing robots to simply
steal the ball. Second, if the ball was closer to the wall than the radius of the
arc, there approaching the ball was impossible. During the kick state, the robot
drives straight forward, activating the break beam and kicking the ball. This
presents its own issue: Any discrepancy in the angle of robot or the “straight”
path would ruin the aim of the shot.

(a) Pivot Kick Approach (b) Pivot Kick Pivot State (c) Pivot Kick Kick State
State

Fig. 8: Pivot Kick Stages

To improve our kicks, we designed a new rotate_path planner. This allows
our robots to rotate in-place. This is in contrast to before, when we would rotate
around a specific point outside of the robot. Therefore, the task of kicking can
be broken into 3 planners. Our collect planner (existing) gathers the ball,
rotate_path (new) turns toward the target, and line kick (existing) drives
through to perform the kick. This solves the issues we observed. We can now
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collect the ball quickly rather than slowly rotating around it, and kick more
accurately because we maintain possession as we pivot.

4.4 Path Planning

In Eindhoven, the trajectories for robot paths were generated via RRT. We were
concerned that RRT was unnecessarily complex given the relatively few amount
of obstacles on the field, and was therefore contributing to possible latency in
our stack. In addition, RRT would in rare cases generate convoluted paths.

We created a new path trajectory generator, which was heavily inspired by
TIGERs Mannheim’s 2019 and 2024 TDPs . To generate a path, we start
with the simple straight-line path from robot to destination. If there are no
obstacles, we stop here. If there are, we generate n points within a radius range
of r1 and ro of the robot and angle dy and dy off the straight-line path. We
sort the points by angle off the straight line path, and incrementally step with
size s off of the robot, checking at each candidate point if there was a direct
unobstructed path to the target. Because we start with the closest angle and
closest distance to the robot, we can terminate once any valid path is found, as
this is the optimal path given the randomly generated points. If no valid path is
found, we defer to RRT to generate a more complex path to route around the
obstacles.

To test the performance differences between the random intermediate points
(RIP) and RRT, we selected random robot, obstacle, and target locations. We
then compared the time to generate a path and the length of the path (in ex-
pected time to travel on it). We found that RIP’s mean creation time was 0.12ms
lower than RRT, while the paths from RIP take 8ms longer to traverse as com-
pared to RRT. While this poses a substantial tradeoff, RIP is shown to be advan-
tageous when the mean creation time needs to be minimized to lessen the load
on the software stack. The data from when RIP cannot find a path and defaults
to RRT is visible in the creation time graph, and aligns with the metrics from
RRT.

Distribution of intermediate_creation.out Distribution of rrt_creation.out

Density
Density
@

01 02 03 04 01 02 03 04
Time (ms) Time (ms)

Fig.9: Time to generate RIP (left) vs RRT (right) trajectories
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Fig. 10: Time to traverse RIP (left) vs RRT (right) trajectories

4.5 Position Testing

Our robot’s positions are assigned by the robot_factory_position. Testing a
particular position on a robot typically required a code change (e.g., manually
checking the robot’s id and setting its position to the one of interest). This can
lead to bugs in testing, inefficiency, and a lot of re-written code when we need
to test at different points in time. We created a position overriding system to
allow for easier testing of our robots. Each position is added to our UI, and when
clicked, sends a message with the requested position’s robot_factory_position
via the new override_position ROS topics, of which there is one per robot.
The position is then updated, and will override any automatic updates by the
robot_factory_position until the override position is reset. This makes testing
new and different positions extremely efficient.

4.6 Docker and Ubuntu Upgrade

We created a Docker container to streamline our development process by pro-
viding a reliable, efficient, and standardized environment for our software stack.
Built on Ubuntu 22.04, it supports both arm64 and amd64 architectures, ensur-
ing accessibility across devices. The container features a noVNC-based virtual
desktop for running and interacting with the soccer simulator. It includes all
necessary dependencies, such as ROS 2 Humble, Git, and our team’s repository,
enabling new developers to start immediately. Port forwarding is configured for
VS Code Remote Development, allowing seamless coding, and the container
also supports communication with the external referee. By replacing our pre-
vious reliance on unreliable and time-consuming virtual machines, the Docker
container simplifies onboarding, eliminates compatibility issues, and provides a
stable, cross-platform environment that boosts productivity.
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We upgraded our codebase to use ROS 2 Humble and Ubuntu 22.04 as ROS
2 Foxy has been officially deprecated. There were some minor changes that had
to be made for our project to compile against the new library. One improvement
that still needs to be made is our “source script”; in its current state, the ros2
command-line tools cannot find custom message type definitions. The easiest
way to fix this is likely to end the practice of manually generating the script and
allow the colcon build tool to generate it automatically. This work has begun.

5 Open Source

RoboJackets continues to open source all aspects of development. Links to soft-
ware, electrical, and mechanical materials can be found on the RoboCup SSL
website |12], or by searching for “RoboCup” on jour GitHub page!
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